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ABSTRACT: Several state-of-the-art methods for isoform identification and quantification are based on sparse probabilistic models, such as Lasso regression. However, explicitly listing the — possibly
exponentially — large set of candidate transcripts is intractable for genes with many exons. For this reason, existing approaches using sparse models are either restricted to genes with few exons, or only run
the regression algorithm on a small set of pre-selected isoforms. We introduce a new technique called FlipFlop which can efficiently tackle the sparse estimation problem on the full set of candidate isoforms
by using network flow optimization. Our technique removes the need of a preselection step, leading to better isoform identification while keeping a low computational cost. Source code is freely available as
an R package at http://cbio.mines-paristech.fr/flipflop.

Background

Alternative Splicing

Salzman et al., 2011

During transcription of eukaryotic genes, exons and introns are
alternatively spliced, producing different isoforms.

RNA-Seq data

Costa et al., 2011

RNA-Seq measures abundance of each exon and exon-exon junc-
tion of a gene.

From RNA-Seq to Isoforms

library preparation

RNA sample
transcripts

reads
50-200pb

?

De Novo 
approaches

- OASES (Schultz et al. 2012)

- Trinity (Grabherr et al. 2011)

- Kissplice (Sacomoto et al. 2012)

 

Transcripts 
Quantification using 

annotations
- RQuant (Bohnert et al. 2009)

- FluxCapacitor (Montgomery et al. 2010)

- IsoEM (Nicolae et al. 2011)

- eXpress (Roberts et al. 2013)

Genome-based 
Transcripts 

Reconstruction
- Scripture (Guttman et al. 2010)

- Cufflinks (Trapnell et al. 2010)

- IsoLasso (Li et al. 2011a)

- NSMAP (Xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- FlipFlop
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Regularization approachs

Isoform Deconvolution

Xia et al., 2011

Notations

n exons

K candidate isoforms (up to 2n − 1)

Binary design:

U =

exon1 . . . exonn junction1,2 . . . junctionp,n 1 . . . 0 1 . . . 1 isoform1

. . . . . . ...
1 . . . 1 0 . . . 1 isoformK

φ ∈ RK
+ vector of abundance of isoforms (unknown)

UTφ ∈ Rn
+ vector of abundance of exons/junctions (data)

GOAL: estimate isoform abundance φ

Sparse Regression via Lasso

Estimate Φ sparse by solving:

min
φ∈RK

+

R(U>φ) + λ‖φ‖1 ,

with R a convex loss function.

rQuant (Bohnert et al., 2010) [1]

IsoLasso (Li et al., 2011) [2]

NSMAP (Xia et al., 2011) [3]

SLIDE (Li et al., 2011) [4]

Computationally
challenging to enumerate
all candidate isoforms for
genes with many exons

Method

Path Selection problem

Bernard et al

1

2 3

4

5

(a) Splicing graph for a gene with 5 exons.
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(b) Graph G0 when all exons are bigger than the read length.
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(c) Graph G0 when the length of exon 3 is smaller than the read length.

Fig. 1. Illustration of the graph construction for a gene with 5 exons. The
original splicing graph is represented in (a). The 5 exons are represented
as vertices and an arrow between two vertices indicates a junction. The
nodes of graph G0 in (b) and (c) are bins with positive effective length
denoted by gray square, as well as source s and sink t represented as circles.
G0 in (b) is the resulting graph when all exons are bigger than the read
length. In that case, each bin either corresponds to a unique exon, or to
a junction between two exons. G0 in (c) is the resulting graph when the
length of exon 3 is smaller than the read length. Some bins involve then
more than two exons, here bins (2-3-4) and (2-3-5). The source links all
possible starting bins and conversely all possible stopping bins are linked to
the sink. There is a one-to-one correspondence between (s, t)-paths in G0

(paths starting at s and ending at t) and isoform candidates. For example,
the path (s, 1, 1-4, 4, 4-5, 5, t) corresponds to isoform 1-4-5.

incoming flow at a vertex is equal to the sum of outgoing flow except
for the source s and the sink t. Such conservation property leads
to a physical interpretation about flows as quantities circulating in
the network, for instance, water in a pipe network or electrons in a
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(a) Reads at every node corresponding to one isoform.
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(b) Reads at every node after adding another isoform.

Fig. 2. Flow interpretation of isoforms using the same graph as in
Figure 1(b). For the sake of clarity, some edges connecting s and t to
internal nodes are not represented, and the length of the different bins are
assumed to be equal. In (a), one unit of flow is carried along the path in red,
corresponding to an isoform with abundance 1. In (b), another isoform with
abundance 3 is added, yielding additional read counts at every node.

circuit board. The source node s injects into the network some units
of flow, which move along the arcs before reaching the sink t.

For example, given a path p 2 P and a non-negative number ✓p,
we can make a flow by setting fuv = ✓p when u and v are two
consecutive vertices along the path p, and fuv = 0 otherwise.
This construction corresponds to sending ✓p units of flows from s
to t along the path p. Such simple flows are called (s, t)-path
flows. More interestingly, if we have a set of non-negative weights
✓ 2 R|P|

+ associated to all paths in P , then we can form a more
complex flow by superimposing all (s, t)-path flows according to

fuv =
X

p2P:p3(u,v)

✓p, (4)

where (u, v) 2 p means that u and v are consecutive nodes on p.
While (4) shows how to make a complex flow from simple ones,

a converse exists, known as the flow decomposition theorem (see,
e.g., Ahuja et al., 1993). It says that for any DAG, every flow vector
can always be decomposed into a sum of (s, t)-path flows. In other
words, given a flow [fuv](u,v)2E0 , there exists a vector ✓ in R|P|

+

such that (4) holds. Moreover, there exists linear-time algorithms to
perform this decomposition (Ahuja et al., 1993). As illustrated in
Figure 2, this leads to a flow interpretation for isoforms.

We now have all the tools in hand to turn (3) into a flow problem
by following Mairal and Yu (2012). Given a flow f = [fuv](u,v)2E0 ,
let us define the amount of flow incoming to a node v in V 0 as
fv ,

P
u2V 0:(u,v)2E0 fuv . Given a vector ✓ 2 R|P|

+ associated
to f by the flow decomposition theorem, i.e., such that (4) holds, we
remark that fv =

P
p2P:p3v ✓p and that ft =

P
p2P ✓p. Therefore,

problem (3) can be equivalently rewritten as:

min
f2F

X

v2V

[�v � yv log �v] + �ft with �v = lvfv . (5)
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Splicing Graph:

FlipFlop Graph:

G ′ = (V ′, E ′)

P ′ = {all paths in G ′}
An isoform is a path from
source s to sink t

Network Flow Formulation
Isoform detection in sparse regression is equivalent to a convex
cost flow problem which can be solved in polynomial time

with the number of exons
Ideas:

Combinaisons of isoforms are flows
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(a) Reads at every node corresponding to one isoform.
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(b) Reads at every node after adding another isoform.

Figure 2: Flow interpretation of isoforms using the same graph as in Figure 1. For simplification
purposes, the length of the di↵erent bins are assumed to be equal. In (a), one unit of flow is carried
along the path in red, corresponding to an isoform with abundance 1. In (b), another isoform with
abundance 3 is added, yielding additional read counts at every node.

problem (5) falls into the class of convex cost flow problems (Ahuja et al., 1993), for which e�-
cient algorithms exist.2 In our experiments, we implemented a variant of the scaling push-relabel
algorithm (Goldberg, 1997), which also appears under the name of "-relaxation method (Bertsekas,
1998). Note that the approach can be generalized to any concave likelihood function, including the
Gaussian model used by IsoLasso and SLIDE.

We remark that network flows have been used in several occasions in bioinformatics. For
example, the terminology of “flow” for RNA-Seq data appears in Montgomery et al. (2010); Singh
et al. (2011). The context of these two works is significantly di↵erent than ours since they neither
perform isoform detection, nor use any network flow algorithm. The work closest to ours in terms
of optimization is probably the genome assembly technique of Medvedev and Brudno (2009), who
solve minimum cost flow problems to find a genome maximizing a read-count likelihood. It however
neither involves RNA-Seq data, nor a similar type of graph as ours.

3.3 Flow Decomposition

We have seen that after solving (5) we need to decompose f? into (s, t)-path flows to obtain a
solution ✓? of (2). As illustrated in Figure 2, this corresponds to finding the two isoforms from 2(b).
Whereas the decomposition might not be ambiguous when f? is a sum of few (s, t)-path flows, it
is not unique in general. Our approach to flow decomposition consists of finding an (s, t)-path
carrying the maximum amount of flow (equivalently finding an isoform with maximum expression),
removing its contribution from the flow, and repeating until convergence. We remark that finding
(s, t)-path flows according to this criterion can be done e�ciently using dynamic programming,
similarly as for finding a shortest path in a directed acyclic graph (Ahuja et al., 1993).

3.4 Model Selection

The last problem we need to solve is model selection: even if we know how to solve (2) e�ciently,
we need to choose a regularization parameter �. For large values of �, (2) yields solutions involving
few expressed isoforms. As we decrease �, more isoforms have a non-zero estimated expression ✓j ,
leading to a better data fit but also leading to a more complex model. A classical way of balancing

2The function (5) can be decomposed into costs Cv(fv) over vertices v. The general convex cost flow objective
function is usually presented as a sum of costs Cuv(fuv) over arcs (u, v). It is however easy to show that costs over
vertices can be reduced to costs over arcs by a simple network transformation (see Ahuja et al., 1993, Section 2.4).
Note that all arcs have zero lower capacities and infinite upper capacities.

7

A flow f is a non-negative function on arcs on [fuv](u,v)∈E ′ that
satisfies conservation constraints.

fuv =
∑

p∈P ′ φp1((u,v)∈p) is a flow,
and there exists a linear time decomposition algorithm

Reformulation as Convex Cost Flow problem

(UTφ)v =
∑
u∈V ′

fuv and ‖φ‖1 = ft .

Then sparse isoform detection is equivalent to

min
f flow

R̃(f ) + λft

There are efficient algorithms for convex cost flow problem in poly-
nomial time [4,5].

Related Work: Traph (Tomescu et al., 2013) [5] (no sparsity)

Results

Simulations
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Figure : Precision and Recall and human simulated RNA-Seq
single-end and paired-end reads with different read lengths and
coverages.

FlipFlop performances increase with read length and
coverage

Speed Comparison
2−5 exons 5−10 exons 10−20 exons 20−116 exons

1e+01

1e+02

1e+03

1e+04

1e+05

C
P

U
 t

im
e

 (
m

s
) 

b
y

 g
e

n
e

IsoLasso
Cufflinks
FlipFlop
NSMAP

●

●
●
●●

●●●●●●●●●●●●●●● ●●
●● ●

● ●
●

●

0 20 40 60

1e
−

02
1e

+
00

1e
+

02

Number of EXONS

E
la

ps
ed

 T
IM

E
 (

s)

● Flipflop
NSMAP

FlipFlop: a few seconds regardless the number of exons!

Summary

Transcript selection over all possible candidates is hard

We show the problem is equivalent to a simpler one

The full problem can be solved in polynomial time

Real Data
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Figure : Precision and Recall on 50 million 75pb paired-end reads
of human stem cells
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