A convex formulation for joint RNA isoform detection and quantification

from multiple RNA-seq samples
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ABSTRACT: We propose a new method for solving the isoform deconvolution problem jointly across several samples, by penalizing a convex objective function with a group-lasso penalty. We show that the
method outperforms simple pooling strategies and other methods based on mixed integer programming.
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Multi-samples: Group-Lasso
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