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RNA-seq: many applications

1 Gene/exon quantification or Estimation of transcript expression

I need for normalization

I previous to differential expression analysis

2 Detection of (novel) alternative splicing isoforms

3 Fusion genes identification
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This morning

1 Gene/exon quantification or Estimation of transcript expression

I need for normalization

I previous to differential expression analysis

2 Detection of (novel) alternative splicing isoforms

3 Fusion genes identification
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RNA-seq pipeline

Pre-processing

Reads alignment

Statistical analysis

Biological validation 
Interpretation

  

Alignment with TopHat
 samp1.bam
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 ….
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Reads Reads

Reads alignment

Assembly
Quantification

Statistical analysis

Biological validation / interpretation

Condition BCondition A

Discovery
Quantification /
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RNA-seq pipeline
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Alignment with TopHat
 samp1.bam
 samp2.bam
 ….

Preprocessing

Reads Reads

Reads alignment

Assembly
Quantification

Statistical analysis

Biological validation / interpretation

Condition BCondition A

Discovery

Exploratory data analysis
- PCA, clustering ...
Differential analysis
Pathway analysis
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RNA-seq data

Matrix of counts (non-negative integer values)

Each column: one experimental unit (sample)

Each row: one variable (gene, exon)

Pasilla data

Study of the transcriptomic effect of RNAi knockdown on the Pasilla gene in
Drosophila melanogaster

> require(pasilla)
> data("pasillaGenes")
> head(counts(pasillaGenes))
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Outline

1 Normalization approaches
Within-sample biases
Between-sample biases
Comparison of normalization methods

2 Differential expression
Introduction to differential analysis
Fisher’s exact test
The poisson model and its limitations
Negative Binomial alternative
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Normalization

An essential step in the analysis of gene expression:

to compare gene expressions from a same sample

to compare genes from different samples (differential analysis)

Definition

Normalization is a process designed to identify and correct technical biases
removing the least possible biological signal.

I batch effects (library prep, sequencing technology, ...)

Goals

I accurate estimation of gene expression levels

I reliable differential expression analysis

Normalization has a great impact on DE results! (Bullard et al 2010, Dillies et al 2012)

8



Normalization

An essential step in the analysis of gene expression:

to compare gene expressions from a same sample

to compare genes from different samples (differential analysis)

Definition

Normalization is a process designed to identify and correct technical biases
removing the least possible biological signal.

I batch effects (library prep, sequencing technology, ...)

Goals

I accurate estimation of gene expression levels

I reliable differential expression analysis

Normalization has a great impact on DE results! (Bullard et al 2010, Dillies et al 2012)

8



Sources of variability

Within-sample

Gene length

Nucleotide composition (GC content)

Between-sample

Library size (number of mapped reads)

Batch effects

A lot of different normalization methods...

Some are part of models for DE, others are ’stand-alone’

They do not rely on similar hypotheses
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Notations

kij : number of reads for gene i in sample j (observed)

Li : length of gene i

qij : expression level of gene i in sample j (quantity of interest, unobserved)

Nj : library size of sample j

sj : scaling factor associated with sample j

10



Outline

1 Normalization approaches
Within-sample biases
Between-sample biases
Comparison of normalization methods

2 Differential expression
Introduction to differential analysis
Fisher’s exact test
The poisson model and its limitations
Negative Binomial alternative

11



Length bias

At the same expression level, a long gene will have more reads than a shorter
one!

kij ∝ Liqij

Sequencing depth 

sample%1% sample%2%

Sequencing depth 

sample%1% sample%2%
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Library size

The higher sequencing depth, the higher counts!

kij ∝ Njqij Sequencing depth 

sample%1% sample%2%
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RPKM

A very intuitive approach to try to correct for length + depth biases

RPKM (Reads per Kilo base per Million mapped reads)

Mortazavi, A. et al. (2008) Nature Methods

Normalization for RNA length and for library size:

RPKMij =
109 × kij

Nj × Li
,

where:

kij : number of reads for gene i in sample j

Nj : library size for sample j (in millions)

Li : length of gene i in base pair
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RPKM calculation

Figure : RPKM calculation
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counts for technical replicates of sample 
A and of sample B in the SEQC data set);  
(iii) RUVr uses residuals from a first-pass 
GLM regression of the unnormalized counts 
on the covariates of interest.

We first applied RUVg to the SEQC and zebrafish data sets using a 
set of in silico empirical control genes (Online Methods and Fig. 3); 
RUVr and RUVs performed similarly (Supplementary Figs. 4–6). 
RUVg effectively reduced library preparation effects for the SEQC data 
set without weakening the sample A versus B effect (Fig. 3a). We also 

performed differential expression analysis between technical replicates 
for both sample A (Fig. 3b) and sample B (Supplementary Fig. 7).  
In the absence of differential expression, the P-value distribution 
should be as close as possible to the uniform distribution (identity 
line for the empirical cumulative distribution function in Fig. 3b). 
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Figure 2 Unwanted variation in the zebrafish 
RNA-seq data set. (a) Boxplots of RLE for 
unnormalized counts. Purple: treated libraries 
(Trt); green: control libraries (Ctl). We expect 
RLE distributions to be centered around zero 
and as similar as possible to each other. 
The RLE boxplots clearly show the need for 
normalization. (The bottom and top of the 
box indicate, respectively, the first and third 
quartiles; the inside line indicates the median; 
the whiskers are located at 1.5 the inter-
quartile range (IQR) above and below the box.) 
(b) Same as a, for upper-quartile-normalized 
counts. UQ normalization centers RLE 
around zero, but fails to remove the excessive 
variability of library 11. (c) Scatterplot of first 
two principal components for unnormalized 
counts (log scale, centered). Libraries do not 
cluster as expected according to treatment. 
(d) Same as c, for UQ-normalized counts. UQ 
normalization does not lead to better clustering 
of the samples. All other normalization 
procedures but RUV behave similarly as UQ 
(Supplementary Figs. 2 and 3).
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Figure 3 RUVg normalization using in silico 
empirical control genes. (a) For the SEQC data 
set, scatterplot matrix of first three principal 
components after RUVg normalization (log 
scale, centered). RUVg adjusts for library 
preparation effects (cf. Fig. 1), while retaining 
the sample A versus B difference. (b) For 
the SEQC data set, empirical cumulative 
distribution function (ECDF) of P-values for 
tests of differential expression between sample 
A replicates (given a value x, the ECDF at x is 
simply defined as the proportion of P-values 
 x). We expect no differential expression and 

P-values to follow a uniform distribution, with 
ECDF as close as possible to the identity line. 
This is clearly not the case for unnormalized 
(gray line) and upper-quartile-normalized (red) 
counts; only with RUVg (purple) do P-values 
behave as expected. (c) For the zebrafish data 
set, boxplots of RLE for RUVg-normalized 
counts. RUVg shrinks the expression measures 
for library 11 toward the median across 
libraries, suggesting robustness against outliers. 
(The bottom and top of the box indicate, 
respectively, the first and third quartiles; the 
inside line indicates the median; the whiskers 
are located at 1.5 the inter-quartile range 
above and below the box.) (d) For the zebrafish 
data set, scatterplot of first two principal 
components for RUVg-normalized counts (log 
scale, centered). Libraries cluster as expected 
by treatment.
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Figure 3 RUVg normalization using in silico 
empirical control genes. (a) For the SEQC data 
set, scatterplot matrix of first three principal 
components after RUVg normalization (log 
scale, centered). RUVg adjusts for library 
preparation effects (cf. Fig. 1), while retaining 
the sample A versus B difference. (b) For 
the SEQC data set, empirical cumulative 
distribution function (ECDF) of P-values for 
tests of differential expression between sample 
A replicates (given a value x, the ECDF at x is 
simply defined as the proportion of P-values 
 x). We expect no differential expression and 

P-values to follow a uniform distribution, with 
ECDF as close as possible to the identity line. 
This is clearly not the case for unnormalized 
(gray line) and upper-quartile-normalized (red) 
counts; only with RUVg (purple) do P-values 
behave as expected. (c) For the zebrafish data 
set, boxplots of RLE for RUVg-normalized 
counts. RUVg shrinks the expression measures 
for library 11 toward the median across 
libraries, suggesting robustness against outliers. 
(The bottom and top of the box indicate, 
respectively, the first and third quartiles; the 
inside line indicates the median; the whiskers 
are located at 1.5 the inter-quartile range 
above and below the box.) (d) For the zebrafish 
data set, scatterplot of first two principal 
components for RUVg-normalized counts (log 
scale, centered). Libraries cluster as expected 
by treatment.

Zebrafish data analysis from Risso et al., 2014. 
Green: control samples. Purple: treated samples.

RLE: relative log expression (comparable samples should have similar RLE distributions centered around 0)

Risso, D. et al. (2014) Nature Biotech
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Between-sample normalization

1 global scaling factor (using one sample)

I EKij = sj qij

I ŝj ??

I Total number of reads : TC (Marioni et al. 2008)

I Upper Quartile : UQ (Bullard et al. 2010)

2 global scaling factor (using several samples)

I more robust

I Anders and Huber 2010 - Package DESeq

I Trimmed Mean of M-values TMM - Package edgeR

3 additive effects (regression-based)

I estimate technical effects with control genes

I Remove Unwanted Variation - Package RUVseq
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Global scaling - I

global scaling factor (using one sample)

I EKij = sjqij

I ŝj ??

1 Total number of reads TC −→ ŝj =
Nj

1
n

∑
l Nl

I intuitive but total read count is strongly dependent on a few highly expressed
transcripts

2 Upper Quartile UQ −→ ŝj =
Q3j

1
n

∑
l Q3l

with Q3 the 75-th quantile.

I calculate Q3 after exclusion of genes with no read count

I more robust to highly express genes

19



Global scaling - I

> dim(counts(pasillaGenes))
14470 7

> # Upper Quartile normalization
> sc = apply(counts(pasillaGenes), 2,

FUN=function(x) quantile(x[x!=0],probs=3/4))
> scaling.factor = sc / mean(sc)

> print(scaling.factor)
treated1fb treated2fb treated3fb
1.3120821 0.7722063 0.8825215
untreated1fb untreated2fb untreated3fb untreated4fb
1.0195798 1.4925979 0.7320917 0.7889207

> counts.normalized = t(t(counts(pasillaGenes))/scaling.factor)
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Global scaling - II

global scaling factor (using several samples)

I EKij = sjqij

I ŝj ??

1 DESeq (Anders and Huber 2010)

2 Trimmed Mean of M-values TMM (Robinson et al. 2010)

Motivation

I A few highly differentially expressed genes have a strong influence on read count
 highly differentialy expressed genes may distort the ratio of total reads
 the total number of read is not a reasonable choice for sj

I Aim: minimizing effect of such genes

Assumption

A majority of transcripts is not differentially expressed
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DESeq (Anders and Huber 2010)

General idea

Let us consider two replicated samples, indexed with j = 1 and j = 2.
Given that the samples are replicates we expect the ratio of counts to be the "same"
for all genes:

I ∀i , ki1
ki2

should be the same

I of course not exactly constant! but narrow distribution around its mode

I ŝ = mediani
ki1
ki2

: a good estimate of the sequencing depth ratio

I if j = 1 and j = 2 are not replicates the median should still be a good estimate
as long as few genes are DE.

 Need to be generalized to more than 2 samples:

I need to compare all samples to a same reference

I definition of a fictive "reference sample" against which to compare everything:

k ref
i =

 m∏
j=1

kij

1/m
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DESeq (Anders and Huber 2010)

Generalization

Calculation of the scaling factor:

ŝj = mediani
kij

k ref
i

where:

kij : number of reads in sample j assigned to gene i

denominator: reference sample created from geometric mean across samples

R package DESeq:

estimateSizeFactors(): estimate the size factors for a "CountDataSet"
object

23



DEseq - example

> require(DESeq)

> # estimate the size factors:
> pasillaGenes <- estimateSizeFactors( pasillaGenes )

> print( sizeFactors(pasillaGenes) )
treated1fb treated2fb treated3fb
1.5116926 0.7843521 0.8958321
untreated1fb untreated2fb untreated3fb untreated4fb
1.0499961 1.6585559 0.7117763 0.7837458

> # understand what happen!
> # calculate the gene-wise geometric means
> geomeans <- exp( rowMeans( log( counts(pasillaGenes) ) ) )

> # Plot a histogram of the ratios
> # ratio of sample 1 over the reference
> hist(log2( counts(pasillaGenes)[,1] / geomeans ), breaks=100)
> abline(v=log2( sizeFactors(pasillaGenes)[ j ] ), col="red")
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DEseq - example

> # Plot a histogram of the ratios
> # ratio of sample 1 over the reference
> hist(log2( counts(pasillaGenes)[,1] / geomeans ), breaks=100)
> abline(v=log2( sizeFactors(pasillaGenes)[ j ] ), col="red")

Histogram of log2(counts(pasillaGenes)[, j]/geomeans)

log2(counts(pasillaGenes)[, j]/geomeans)
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Remove unwanted variation (RUV)

additive effect (regression-based)

I uses control genes (housekeeping genes, spike-in) to estimate technical noise

I estimate a gene-specific nuisance effect

1 RUVSeq (Risso et al. 2014). R package RUVSeq

Framework

I factor of interest xj (e.g. outcome) for sample j , its effect βi on gene i .

I unwanted factor wj (e.g. batch) for sample j , its effect αi on gene j .

I log kij = xjβi + wjαi + εij

I control genes are not affected by the factor of interest X

1 βc = 0 for control gene c. Hence log kc = Wαc + εc .

2 estimate Ŵ by PCA.
plug back Ŵ in the model and do a regression to get β̂ and α̂

3 remove Ŵ α̂ from log k
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RUV result
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counts for technical replicates of sample 
A and of sample B in the SEQC data set);  
(iii) RUVr uses residuals from a first-pass 
GLM regression of the unnormalized counts 
on the covariates of interest.

We first applied RUVg to the SEQC and zebrafish data sets using a 
set of in silico empirical control genes (Online Methods and Fig. 3); 
RUVr and RUVs performed similarly (Supplementary Figs. 4–6). 
RUVg effectively reduced library preparation effects for the SEQC data 
set without weakening the sample A versus B effect (Fig. 3a). We also 

performed differential expression analysis between technical replicates 
for both sample A (Fig. 3b) and sample B (Supplementary Fig. 7).  
In the absence of differential expression, the P-value distribution 
should be as close as possible to the uniform distribution (identity 
line for the empirical cumulative distribution function in Fig. 3b). 
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Figure 2 Unwanted variation in the zebrafish 
RNA-seq data set. (a) Boxplots of RLE for 
unnormalized counts. Purple: treated libraries 
(Trt); green: control libraries (Ctl). We expect 
RLE distributions to be centered around zero 
and as similar as possible to each other. 
The RLE boxplots clearly show the need for 
normalization. (The bottom and top of the 
box indicate, respectively, the first and third 
quartiles; the inside line indicates the median; 
the whiskers are located at 1.5 the inter-
quartile range (IQR) above and below the box.) 
(b) Same as a, for upper-quartile-normalized 
counts. UQ normalization centers RLE 
around zero, but fails to remove the excessive 
variability of library 11. (c) Scatterplot of first 
two principal components for unnormalized 
counts (log scale, centered). Libraries do not 
cluster as expected according to treatment. 
(d) Same as c, for UQ-normalized counts. UQ 
normalization does not lead to better clustering 
of the samples. All other normalization 
procedures but RUV behave similarly as UQ 
(Supplementary Figs. 2 and 3).
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Figure 3 RUVg normalization using in silico 
empirical control genes. (a) For the SEQC data 
set, scatterplot matrix of first three principal 
components after RUVg normalization (log 
scale, centered). RUVg adjusts for library 
preparation effects (cf. Fig. 1), while retaining 
the sample A versus B difference. (b) For 
the SEQC data set, empirical cumulative 
distribution function (ECDF) of P-values for 
tests of differential expression between sample 
A replicates (given a value x, the ECDF at x is 
simply defined as the proportion of P-values 
 x). We expect no differential expression and 

P-values to follow a uniform distribution, with 
ECDF as close as possible to the identity line. 
This is clearly not the case for unnormalized 
(gray line) and upper-quartile-normalized (red) 
counts; only with RUVg (purple) do P-values 
behave as expected. (c) For the zebrafish data 
set, boxplots of RLE for RUVg-normalized 
counts. RUVg shrinks the expression measures 
for library 11 toward the median across 
libraries, suggesting robustness against outliers. 
(The bottom and top of the box indicate, 
respectively, the first and third quartiles; the 
inside line indicates the median; the whiskers 
are located at 1.5 the inter-quartile range 
above and below the box.) (d) For the zebrafish 
data set, scatterplot of first two principal 
components for RUVg-normalized counts (log 
scale, centered). Libraries cluster as expected 
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Zebrafish data analysis from Risso et al., 2014. 
Green: control samples. Purple: treated samples.

RLE: relative log expression (comparable samples should have similar RLE distributions centered around 0)898 VOLUME 32 NUMBER 9 SEPTEMBER 2014 NATURE BIOTECHNOLOGY

A N A LY S I S

counts for technical replicates of sample 
A and of sample B in the SEQC data set);  
(iii) RUVr uses residuals from a first-pass 
GLM regression of the unnormalized counts 
on the covariates of interest.

We first applied RUVg to the SEQC and zebrafish data sets using a 
set of in silico empirical control genes (Online Methods and Fig. 3); 
RUVr and RUVs performed similarly (Supplementary Figs. 4–6). 
RUVg effectively reduced library preparation effects for the SEQC data 
set without weakening the sample A versus B effect (Fig. 3a). We also 

performed differential expression analysis between technical replicates 
for both sample A (Fig. 3b) and sample B (Supplementary Fig. 7).  
In the absence of differential expression, the P-value distribution 
should be as close as possible to the uniform distribution (identity 
line for the empirical cumulative distribution function in Fig. 3b). 
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and as similar as possible to each other. 
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quartile range (IQR) above and below the box.) 
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counts. UQ normalization centers RLE 
around zero, but fails to remove the excessive 
variability of library 11. (c) Scatterplot of first 
two principal components for unnormalized 
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cluster as expected according to treatment. 
(d) Same as c, for UQ-normalized counts. UQ 
normalization does not lead to better clustering 
of the samples. All other normalization 
procedures but RUV behave similarly as UQ 
(Supplementary Figs. 2 and 3).
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empirical control genes. (a) For the SEQC data 
set, scatterplot matrix of first three principal 
components after RUVg normalization (log 
scale, centered). RUVg adjusts for library 
preparation effects (cf. Fig. 1), while retaining 
the sample A versus B difference. (b) For 
the SEQC data set, empirical cumulative 
distribution function (ECDF) of P-values for 
tests of differential expression between sample 
A replicates (given a value x, the ECDF at x is 
simply defined as the proportion of P-values 
 x). We expect no differential expression and 

P-values to follow a uniform distribution, with 
ECDF as close as possible to the identity line. 
This is clearly not the case for unnormalized 
(gray line) and upper-quartile-normalized (red) 
counts; only with RUVg (purple) do P-values 
behave as expected. (c) For the zebrafish data 
set, boxplots of RLE for RUVg-normalized 
counts. RUVg shrinks the expression measures 
for library 11 toward the median across 
libraries, suggesting robustness against outliers. 
(The bottom and top of the box indicate, 
respectively, the first and third quartiles; the 
inside line indicates the median; the whiskers 
are located at 1.5 the inter-quartile range 
above and below the box.) (d) For the zebrafish 
data set, scatterplot of first two principal 
components for RUVg-normalized counts (log 
scale, centered). Libraries cluster as expected 
by treatment.

RUV normalization

Risso, D. et al. (2014) Nature Biotech
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Which method should you use for normalization of
RNA-Seq data ?

I How to choose a normalization adapted to your experiment ?

I What is the impact of the normalization step on the downstream analysis ?
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Comparison of between-sample normalization methods

StatOmique workshop: http://vim-iip.jouy.inra.fr:8080/statomique/

30

http://vim-iip.jouy.inra.fr:8080/statomique/


Normalized data distribution

An effective normalization should result in a stabilization of read counts across
samples
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Figure : Effects of normalization on E. histolytica data.

Results

most of the methods yield comparable results

RPKM and TC that do not improve over the raw counts (sensitive to high count
genes) 31



Effect of normalization on housekeeping genes

Method

Assumption: housekeeping genes are similarly expressed across samples

I 30 housekeeping genes selected from a list previously described in Eisenberg et Levanon (2003)

I average the coefficient of variation of housekeeping genes

Normalization methods
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Figure : Variation in expression among a set of housekeeping genes

Results

DESeq and TMM normalization methods lead to smallest coefficient of variation 32



So the Winner is ... ?

In most cases

The methods yield similar results

However ...

Differences appear based on data characteristics
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Conclusions on normalization

RNA-seq data are affected by biaises (total number of mapped reads per
sample, gene length, composition bias)

Csq1: non-uniformity of the distribution of reads along the genome

Csq2: technical variability within and between-sample

A normalization is needed and has a great impact on the DE genes (Bullard et al
2010), (Dillies et al 2012)

TC, RPKM, UQ Adjustment of distributions, implies a similarity between RNA
repertoires expressed

DESeq, TMM More robust ratio of counts using several samples, suppose that the
majority of the genes are not DE.

RUVSeq Powerful when a large set of control genes can be identified
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Differential analysis

What is differential gene expression ?

A gene is declared differentially expressed (DE) if an observed difference or change in
expression between two experimental conditions is statistically significanta

How to determine the level of significance ?

 Statistical tools (hypothesis testing)

 Statistical tools for RNA-seq need to analyze read-count distributions

agreater than expected just due to natural random variation

Often used to compare expression levels in different conditions:

Tissue: liver vs. brain

Treatment: drugs A, B, and C

State: healthy controls vs. patient

Across time
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Hypothesis testing

The key notions are:

1 formulate the testing hypothesis: null hypothesis versus alternative

2 p-value computation: probabilty of observing the data given that a hypothesis is
true

3 type I and type II errors

4 multiple-testing: control of the FDR (false discovery rate)
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Null hypothesis

Formulate the null hypothesis

 The statement being tested in a test of statistical significance is called the null
hypothesis

 The null hypothesis is usually a statement of no effect or no difference

Example

Let qi be the expression level of gene i .
We have access to measurements of qi in two groups A and B.
ie we observe (qA

i1, q
A
i2, . . . ) and (qB

i1, q
B
i2, . . . ) (biological replicates in both groups).

 H0: qA
i and qB

i follow the same distribution

 H0: qA
i and qB

i have equal mean
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Null hypothesis

Formulate the null hypothesis

 The statement being tested in a test of statistical significance is called the null
hypothesis

 The null hypothesis is usually a statement of no effect or no difference

Example t-test

We suppose:

I qA
i ∼ N(µA

i , σ)

I qB
i ∼ N(µB

i , σ)

 H0: µA
i = µB

i
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P-value

p-value is the probability of an observed (or more extreme) result assuming that the
null hypothesis is true

p = P(observation | H0 is true)

I p "small" means that H0 is likely to be "false"
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P-value

p-value is the probability of an observed (or more extreme) result assuming that the
null hypothesis is true

p = P(observation | H0 is true)

I p "small" means that H0 is likely to be "false"

Example t-test

We suppose:

I qA
i ∼ N(µA

i , σ) and qB
i ∼ N(µB

i , σ)

I t-statistic

t =
q̄A

i − q̄B
i

s/
√

n

I obtained p-value (the t-statistic follows a Student law under H0)

p = P(T ≥ t |H0)
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p-value is the probability of an observed (or more extreme) result assuming that the
null hypothesis is true
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Statistical errors

I "uncorrecting testing" reject H0 if p ≤ α (eg, α = 0.05)

I type I error = false positive = FP

I type II error = false negative = FN
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Multiple testing

1 "Uncorrected testing"

I Gives P(FPi ) ≤ α for all 1 ≤ i ≤ n

I Many type I errors (FP)

I eg: 10000 genes that are not DE. Significance level α = 0.05. But
10000x0.05 = 500 genes will be call DE "by chance".

2 Control of the type I error

I e.g.: Bonferroni: use per-comparison significance level α/n

I Guarantees P(FP) ≤ α

I Very conservative

3 Control of the FDR false discovery rate

I first defined by Benjamini-Hochberg (BH, 1995, 2000)

I Guarantees FDR = E
(

FP
FP+TP

)
≤ α

I finding 100 DE genes with only 2 FP seems better than finding 6 DE genes with 2
FP ...
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Differential analysis gene-by-gene

Strategy

Differential expression gene-by-gene:

For each gene i , is there a significant difference in expression between the
condition 1 and condition 2?

Statistical model (definition and parameter estimation)

Testing for differential expression:

H0i : µi1 = µi2

State of the art

An abundant literature

Fisher’s exact test

Poisson model

Negative Binomial model (DESeq,edgeR)

Comparison of methods (Pachter et al. 2011, Kvam and Liu 2012, Soneson and
Delorenzi 2013)
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Fisher’s exact test

I can be used for RNA-seq without replicates, on a gene-by-gene basis,
organizing the data in a 2 x 2 contingency table

condition 1 condition 2 Total
Gene i xi1 xi2 xi.
Remaining genes

∑
g 6=i xg1

∑
g 6=i xg2

∑
g6=i xg.

Total x.1 x.2 x..

Null hypothesis

The proportion of counts for some gene i amongst two samples is the same as that of
the remaining genes:

H0i :
πi1

πi2
=
πg1

πg2

where πi1 is the true (unknown) proportion of counts in sample 1

 we can calculate the p-value p = P(readcount ≥ xi1|H0) exactly using the
hypergeometric law (one or two-sided Fisher exact test)
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Fisher’s exact test

> countTable

condition 1 condition 2 Total
Gene 1 216 160 376

Remaining genes 28,351,805 21,934,509 50,286,314
Total 28,352,021 21,934,669 50,286,690

> fisher.test(countTable)
Fisher’s Exact Test for Count Data
data: countTable
p-value = 0.7159
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.847 1.289
sample estimates:
odds ratio

1.04

 if test for many genes, need to adjust p-value for multiple-testing!
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Fisher’s exact test

Need for replicates!

Without replication:

complete lack of knowledge about biological variation.

no sound statistical basis for inference of differences between the groups.

Tarazona, S. et al. (2011) Genome Research

"We propose a novel methodology for the assessment of differentially expressed
features, NOISeq, that empirically models the noise in count data, is reasonably
robust against the choice of SD, and can work in the absence of replication."
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Fisher’s exact test

Need for replicates!

Fisher’s exact test between two samples
Example data: fly cell culture, knock-down of pasilla 

 
 
 
 
 (Brooks et al., Genome Res., 
2011)

knock-down sample T2 
     versus
control sample U3

control sample U2
     versus
control sample U3

red: significant genes according to Fisher test (at 10% FDR)

Figure : Fly cell culture, knock-down of pasilla (from Simon Anders)
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Poisson model – Intuition

Need to model:

non-negative integer values (count data)

From the Binomial law to the Poisson distribution:

B(n, p) converges to P(λ = np) when N >> p

Marioni, J. et al. (2008) Genome Research
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Poisson model

The number of reads that are mapped into a gene was first modeled using a Poisson
distribution

P(X = k) =
λk e−λ

k!
,

with λ > 0.

 only one parameter is needed to determine the probability of an event

Poisson distribution naturally appears for count data

It assumes that mean and variance are the same:

λ = E(X) = Var(X)

no need to estimate the variance (convenient!)
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Poisson (mean = variance)RNA-seq (2)
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Limitations of the poisson model

The variance grows faster than the mean in RNAseq data.

For Poisson-distributed data, the variance is equal to the 
mean. 

No need to estimate the variance. This is convenient.

E.g. Wang et al. (2010), Bloom et al. (2009), Kasowski et al. 
(2010), Bullard et al. (2010), ...

mean

va
ria
nc
e

10^−4

10^−2

10^0

10^2

10^4

10^6

10^8

10^0 10^1 10^2 10^3 10^4

Poisson: v ~ �1

NB: v ~ �2

Data: Nagalakshmi et al. 
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Figure : Mean count vs variance of RNA seq data. Orange line: the fitted observed curve.
Purple: the variance implied by the Poisson distribution.

Anders S, Huber W (2010) Genome Biol
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E.g. Wang et al. (2010), Bloom et al. (2009), Kasowski et al. 
(2010), Bullard et al. (2010), ...
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Science 2008

Figure : Mean count vs variance of RNA seq data. Orange line: the fitted observed curve.
Purple: the variance implied by the Poisson distribution.

Overdispersion in RNA-seq data !  counts from biological replicates tend to have
variance exceeding the mean
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What is the impact of overdispersion ?

 overdispersion⇒ underestimation of the biological variance

Let us consider this question using the t-
distribution:

ti =
x̄ (1)

i· − x̄ (2)
i·

S√
n

,

where

S is the sample standard deviation,

n is the sample size

 Underestimation of the variance⇒ overes-
timation of ti

Figure : Empirical cumulative distribution functions (ECDFs) of
p-values. No genes are truly differentially expressed, and the ECDF
curves (blue) should remain below the diagonal (gray)

 Overdispersion will lead to an increased type I error rate (probability to falsely declare
a gene DE)
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Alternative approaches

Parametric approaches

Method Model Reference
baySeq NB Hardcastle TJ and Kelly KA (2010)
EBSeq NB Leng N (2012)

ShrinkSeq NB (zero-inflated) Van de Wiel MA et al. (2012)
edgeR NB Robinson MD et al. (2010)
DESeq NB Anders S and Huber W (2010)

NBPSeq over-parameterized NB Di Y et al. (2011)
TSPM poisson Auer PL and Doerge RW (2011)

Non-parametric strategies

NOISeq (Tarazona S et al. 2011)

SAMseq (Li J and Tibshirani R 2011)

Transformation-based methods

 aim to find a transformation for counts to analyze them by traditional methods

voom + limma

vst + limma 55



Negative binomial distribution

The negative binomial distribution can be used as an alternative to the Poisson
distribution:

Xij ∼ NB(µij , φi )

where:

E(Xij ) = µij

Var(Xij ) = µij + φiµ
2
ij

φi is the dispersion parameter

The variance is always larger than the mean for the negative binomial⇒ suitable for
RNA-seq data
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Negative binomial distribution
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φ estimation

Many genes, few biological samples - difficult to estimate φ on a gene-by-gene basis
Some proposed solutions:

Method Variance
DESeq µ(1 + φµµ)
edgeR µ(1 + φµ)

NBPseq µ(1 + φµα−1)

DESeq

data-driven relationship of variance and mean estimated using local regression for
robust fit across genes

edgeR

Borrow information across genes for stable estimates of φ.
3 ways to estimate φ: common, trended, tagwise (moderated)

NBPSeq

NBP includes two parameters φ and α, estimated from all the genes
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DESeq

Some practical considerations

Data must be input as raw counts (and not RPKM or FPKM values):
normalization offsets are included in the model

Each column should be an independent biological replicate

Multi-factor designs now included

Check out the DESeq Users’Guide for examples
http://www.bioconductor.org/packages/devel/bioc/vignettes/
DESeq/inst/doc/DESeq.pdf

Version matters !
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DESeq: Main commands

Step 1 : creation of a CountDataSet object

> head(countTable)
untreated3 untreated4 treated2 treated3

FBgn0000003 0 0 0 1
FBgn0000008 76 70 88 70
FBgn0000014 0 0 0 0
FBgn0000015 1 2 0 0

> condition
[1] untreated untreated treated treated
Levels: treated untreated

# We can now instantiate a CountDataSet (central data structure
in the DESeq package)
> cds = newCountDataSet( countTable, condition )
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DESeq: Main commands

Step 2 : Normalization

# estimate the effective library size
> cds <- estimateSizeFactors(cds)

> sizeFactors(cds)
treated2fb treated3fb untreated3fb untreated4fb

1.297 1.042 0.818 0.911

# If we divide each column of the count table by the size factor
for this column, the count values are brought to a common scale

> head( counts( cds, normalized=TRUE ) )
untreated3 untreated4 treated2 treated3

FBgn0000003 0.00 0.00 0.0 0.897
FBgn0000008 87.05 69.27 86.1 62.803
FBgn0000014 0.00 0.00 0.0 0.000
FBgn0000015 1.15 1.98 0.0 0.000
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DESeq: Main commands

Step 3: Differential analysis

> cds <- estimateDispersions(cds)
# estimates a dispersion value for each gene
# fits a curve through the estimates
# assigns to each gene a dispersion value
(choice between the per-gene estimate and the fitted value)

> plotDispEsts(cds) # estimates against the mean normalized
counts

> res <- nbinomTest( cds, "untreated", "treated" )
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DESeq: Main commands

Results:

> head(res)

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj
FBgn0000008 91.78 93.05 90.51 0.973 -0.0399 1.000 1.000
FBgn0000014 1.93 0.00 3.85 Inf Inf 0.378 0.913
FBgn0000017 3995.15 4340.18 3650.11 0.841 -0.2498 0.276 0.845
FBgn0000018 344.22 342.43 346.01 1.010 0.0150 0.896 1.000
FBgn0000024 5.65 4.09 7.21 1.763 0.8180 0.525 0.972
FBgn0000032 1025.52 1038.25 1012.79 0.975 -0.0358 0.801 1.000

> > plot(res$baseMean, res$log2FoldChange, log="x", pch=20, cex=.3,
+ col = ifelse( res$padj < .1, "red", "black"))

multiple testing correction: here genes are called DE if adjusted p-value are below
10% FDR 63
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What’s next ?

What happens after a differential analysis?

Further analysis

Test for enriched functional categories (i.e., do differentially expressed genes
tend to share the same function?)

Clustering of genes (i.e., co-expression analysis)

Inference of gene networks

Integration with other data (epigenomic, metabolomic, proteomic, ...)

Biological validation

Gene knock-down experiments

qPCR validation
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Thanks

Thank you !

* Slides inspired from Marine Jeanmougin, Julie Aubert, Laurent Jacob, Simon
Anders, Michael Love and Peter N. Robinson
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