

Some statistical methods for RNA-seq data analysis

Elsa Bernard

Institut Curie U900 / Mines ParisTech

Juin 2015

* Slides inspired from Marine Jeanmougin, Julie Aubert, Laurent Jacob, Simon Anders, Michael Love and Peter N. Robinson

- need for normalization
- previous to differential expression analysis

Reference genome sequence

Detection of (novel) alternative splicing isoforms

3 Fusion genes identification

- need for normalization
- > previous to differential expression analysis

2 Detection of (novel) alternative splicing isoforms

Fusion genes identification

- need for normalization
- > previous to differential expression analysis
- 2 Detection of (novel) alternative splicing isoforms

- need for normalization
- previous to differential expression analysis
- 2 Detection of (novel) alternative splicing isoforms
- **3 Fusion genes** identification

Counting reads - HTseq Gene quantification - normalization Transcript estimation Alternative splicing Fusion genes

Exploratory data analysis - PCA, clustering ... Differential analysis Pathway analysis

- Matrix of counts (non-negative integer values)
- Each column: one experimental unit (sample)
- Each row: one variable (gene, exon)

Pasilla data

Study of the transcriptomic effect of RNAi knockdown on the Pasilla gene in Drosophila melanogaster

- > require(pasilla)
- > data("pasillaGenes")
- > head(counts(pasillaGenes))

	treated1fb	treated2fb	treated3fb	untreated1fb	untreated2fb	untreated3fb	untreated4fb
FBgn0000003	0	1	1	0	0	0	0
FBgn0000008	118	139	77	89	142	84	76
FBgn0000014	0	10	0	1	1	0	0
FBgn0000015	0	0	0	0	0	1	2
FBgn0000017	4852	4853	3710	4640	7754	4026	3425
FBgn0000018	572	497	322	552	663	272	321

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

An essential step in the analysis of gene expression:

- to compare gene expressions from a same sample
- to compare genes from different samples (differential analysis)

Definition

Normalization is a process designed to **identify and correct technical biases** removing the least possible biological signal.

batch effects (library prep, sequencing technology, ...)

Goals

- accurate estimation of gene expression levels
- reliable differential expression analysis

Normalization has a great impact on DE results! (Bullard et al 2010, Dillies et al 2012)

An essential step in the analysis of gene expression:

- to compare gene expressions from a same sample
- to compare genes from different samples (differential analysis)

Definition

Normalization is a process designed to **identify and correct technical biases** removing the least possible biological signal.

batch effects (library prep, sequencing technology, ...)

Goals

- accurate estimation of gene expression levels
- reliable differential expression analysis

Normalization has a great impact on DE results! (Bullard et al 2010, Dillies et al 2012)

Within-sample

- Gene length
- Nucleotide composition (GC content)

Between-sample

- Library size (number of mapped reads)
- Batch effects

A lot of different normalization methods..

- Some are part of models for DE, others are 'stand-alone'
- They do not rely on similar hypotheses

Within-sample

- Gene length
- Nucleotide composition (GC content)

Between-sample

- Library size (number of mapped reads)
- Batch effects

A lot of different normalization methods...

- Some are part of models for DE, others are 'stand-alone'
- They do not rely on similar hypotheses

- *k_{ij}* : **number of reads** for gene *i* in sample *j* (observed)
- L_i : length of gene i
- *q_{ij}* : expression level of gene *i* in sample *j* (quantity of interest, unobserved)
- *N_j* : **library size** of sample *j*
- *s_j* : **scaling factor** associated with sample *j*

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

At the same expression level, a long gene will have more reads than a shorter one!

The higher sequencing depth, the higher counts!

sample 1	sample 2

A very intuitive approach to try to correct for length + depth biases

RPKM (Reads per Kilo base per Million mapped reads)

Mortazavi, A. et al. (2008) Nature Methods

Normalization for RNA length and for library size:

$$RPKM_{ij} = rac{10^9 imes k_{ij}}{N_j imes L_i},$$

where:

- *k_{ij}*: number of reads for gene *i* in sample *j*
- *N_j*: library size for sample *j* (in millions)
- L_i: length of gene *i* in base pair

RPKM = 19/(0.6*8) = 3.96 RPKM = 28/(1.1*8) =1.94 **RPKM = 16/(1.4*8) = 1.43**

Figure : RPKM calculation

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

Example

Unnormalized counts а С 2 0.8 -Trt.9 0.6 RLE 0.4 PC2 0.2 Ctl.1 0 -2 Ctl.3 -0.2 Trt.13 -0.4 Trt.11 -4 1.0 Ctl.1 Ctl.3 Ctl.5 Trt.9 Trt.11 Trt.13 -0.5 0.5 0 PC1

Zebrafish data analysis from Risso et al., 2014.

Green: control samples. Purple: treated samples.

RLE: relative log expression (comparable samples should have similar RLE distributions centered around 0)

global scaling factor (using one sample)

- $\blacktriangleright \quad \mathbb{E}K_{ij} = s_j q_{ij}$
- ▶ ŝ_j ??
- Total number of reads : TC (Marioni et al. 2008)
- Upper Quartile : UQ (Bullard et al. 2010)

global scaling factor (using several samples)

- more robust
- Anders and Huber 2010 Package DESeq
- Trimmed Mean of M-values TMM Package edgeR

- estimate technical effects with control genes
- Remove Unwanted Variation Package RUVseq

global scaling factor (using one sample)

 $\blacktriangleright \quad \mathbb{E}K_{ij} = s_j q_{ij}$

▶ ŝj ??

- Total number of reads : TC (Marioni et al. 2008)
- Upper Quartile : UQ (Bullard et al. 2010)

global scaling factor (using several samples)

- more robust
- Anders and Huber 2010 Package DESeq
- Trimmed Mean of M-values TMM Package edgeR

- estimate technical effects with control genes
- Remove Unwanted Variation Package RUVseq

global scaling factor (using one sample)

$$\blacktriangleright \quad \mathbb{E}K_{ij} = s_j q_{ij}$$

▶ ŝj ??

- Total number of reads : TC (Marioni et al. 2008)
- Upper Quartile : UQ (Bullard et al. 2010)

global scaling factor (using several samples)

- more robust
- Anders and Huber 2010 Package DESeq
- Trimmed Mean of M-values TMM Package edgeR

- estimate technical effects with control genes
- Remove Unwanted Variation Package RUVseq

global scaling factor (using one sample)

$$\blacktriangleright \quad \mathbb{E}K_{ij} = s_j q_{ij}$$

▶ ŝj ??

- Total number of reads : TC (Marioni et al. 2008)
- Upper Quartile : UQ (Bullard et al. 2010)

2 global scaling factor (using several samples)

- more robust
- Anders and Huber 2010 Package DESeq
- Trimmed Mean of M-values TMM Package edgeR

- estimate technical effects with control genes
- Remove Unwanted Variation Package RUVseq

global scaling factor (using one sample)

$$\blacktriangleright \quad \mathbb{E}K_{ij} = s_j q_{ij}$$

▶ ŝj ??

- Total number of reads : TC (Marioni et al. 2008)
- Upper Quartile : UQ (Bullard et al. 2010)

2 global scaling factor (using several samples)

- more robust
- Anders and Huber 2010 Package DESeq
- Trimmed Mean of M-values TMM Package edgeR
- additive effects (regression-based)
 - estimate technical effects with control genes
 - Remove Unwanted Variation Package RUVseq

global scaling factor (using one sample)

- $\blacktriangleright \quad \mathbb{E}K_{ij} = s_j q_{ij}$
- ▶ ŝ_j ??
- **1** Total number of reads TC $\longrightarrow \hat{S}_j = \frac{N_j}{\frac{1}{n}\sum_l N_l}$
 - intuitive but total read count is strongly dependent on a few highly expressed transcripts
- 2 Upper Quartile UQ $\longrightarrow \hat{S}_j = \frac{Q3_j}{\frac{1}{n}\sum_l Q3_l}$ with Q3 the 75-th quantile.

calculate Q3 after exclusion of genes with no read count

more robust to highly express genes

> counts.normalized = t(t(counts(pasillaGenes))/scaling.factor)

global scaling factor (using several samples)

- ▶ ŝj ??
- DESeq (Anders and Huber 2010)
- Z Trimmed Mean of M-values TMM (Robinson et al. 2010)

Motivation

- ► A few highly differentially expressed genes have a strong influence on read count ~ highly differentially expressed genes may distort the ratio of total reads ~ the total number of read is not a reasonable choice for s_j
- Aim: minimizing effect of such genes

Assumption

A majority of transcripts is not differentially expressed

General idea

Let us consider two **replicated samples**, indexed with j = 1 and j = 2.

Given that the samples are replicates we expect the ratio of counts to be the "same" for all genes:

- \blacktriangleright $\forall i$, $\frac{k_{i1}}{k_{i2}}$ should be the same
- of course not exactly constant! but narrow distribution around its mode
- $\hat{s} = \text{median}_i \frac{k_{i1}}{k_{i2}}$: a good estimate of the sequencing depth ratio
- if j = 1 and j = 2 are not replicates the median should still be a good estimate as long as few genes are DE.

--- Need to be generalized to more than 2 samples:

- need to compare all samples to a same reference
- definition of a fictive "reference sample" against which to compare everything:

$$k_i^{\text{ref}} = \left(\prod_{j=1}^m k_{ij}\right)^{1/m}$$

General idea

Let us consider two **replicated samples**, indexed with j = 1 and j = 2.

Given that the samples are replicates we expect the ratio of counts to be the "same" for all genes:

- \blacktriangleright $\forall i$, $\frac{k_{i1}}{k_{i2}}$ should be the same
- of course not exactly constant! but narrow distribution around its mode
- $\hat{s} = \text{median}_i \frac{k_{i1}}{k_{i2}}$: a good estimate of the sequencing depth ratio
- if j = 1 and j = 2 are not replicates the median should still be a good estimate as long as few genes are DE.
- ~ Need to be generalized to more than 2 samples:
 - need to compare all samples to a same reference
 - ▶ definition of a fictive "*reference sample*" against which to compare everything:

$$k_i^{\text{ref}} = \left(\prod_{j=1}^m k_{ij}\right)^{1/m}$$

Generalization

Calculation of the scaling factor:

$$\hat{s}_{j} = \mathsf{median}_{i} rac{k_{ij}}{k_{i}^{\mathsf{ref}}}$$

where:

- k_{ij}: number of reads in sample j assigned to gene i
- denominator: reference sample created from geometric mean across samples

R package DESeq:

estimateSizeFactors(): estimate the size factors for a "CountDataSet"
object

> require(DESeq)

```
> # estimate the size factors:
> pasillaGenes <- estimateSizeFactors( pasillaGenes )</pre>
```

```
> print( sizeFactors(pasillaGenes) )
treated1fb treated2fb treated3fb
1.5116926 0.7843521 0.8958321
untreated1fb untreated2fb untreated3fb untreated4fb
1.0499961 1.6585559 0.7117763 0.7837458
```

```
> # understand what happen!
> # calculate the gene-wise geometric means
> geomeans <- exp( rowMeans( log( counts(pasillaGenes) ) ) )</pre>
```

```
> # Plot a histogram of the ratios
> # ratio of sample 1 over the reference
> hist(log2( counts(pasillaGenes)[,1] / geomeans ), breaks=100)
> abline(v=log2( sizeFactors(pasillaGenes)[ j ] ), col="red")
```


- > # Plot a histogram of the ratios
- > # ratio of sample 1 over the reference
- > hist(log2(counts(pasillaGenes)[,1] / geomeans), breaks=100)
- > abline(v=log2(sizeFactors(pasillaGenes)[j]), col="red")

Histogram of log2(counts(pasillaGenes)[, j]/geomeans)

log2(counts(pasillaGenes)[, j]/geomeans)

additive effect (regression-based)

- ▶ uses control genes (housekeeping genes, spike-in) to estimate technical noise
- estimate a gene-specific nuisance effect
- 1 RUVSeq (Risso et al. 2014). R package RUVSeq

Framework

- ▶ factor of interest x_i (e.g. outcome) for sample j, its effect β_i on gene i.
- unwanted factor w_j (e.g. batch) for sample j, its effect α_i on gene j.
- $| \log k_{ij} = x_j \beta_i + w_j \alpha_i + \epsilon_{ij}$
- control genes are not affected by the factor of interest X
 - 1 $\beta_c = 0$ for control gene *c*. Hence log $k_c = W \alpha_c + \epsilon_c$.
 - estimate Ŵ by PCA. plug back Ŵ in the model and do a regression to get β ar
 - 3 remove $\hat{W}\hat{\alpha}$ from log k

additive effect (regression-based)

- ▶ uses control genes (housekeeping genes, spike-in) to estimate technical noise
- estimate a gene-specific nuisance effect
- RUVSeq (Risso et al. 2014). R package RUVSeq

Framework

- ▶ factor of interest x_j (e.g. outcome) for sample j, its effect β_i on gene i.
- unwanted factor w_j (e.g. batch) for sample j, its effect α_i on gene j.
- $| \log k_{ij} = \mathbf{x}_{j}\beta_{i} + \mathbf{w}_{j}\alpha_{i} + \epsilon_{ij}$
- control genes are not affected by the factor of interest X
 - **1** $\beta_c = 0$ for control gene *c*. Hence $\log k_c = W \alpha_c + \epsilon_c$.
 - **2** estimate \hat{W} by PCA. plug back \hat{W} in the model and do a regression to get $\hat{\beta}$ and $\hat{\alpha}$
 - **3** remove $\hat{W}\hat{\alpha}$ from log k

Zebrafish data analysis from Risso et al., 2014.

Green: control samples. Purple: treated samples.

RLE: relative log expression (comparable samples should have similar RLE distributions centered around 0)

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases

Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

Which method should you use for normalization of RNA-Seq data ?

- ▶ How to choose a normalization adapted to your experiment ?
- What is the impact of the normalization step on the downstream analysis ?

StatOmique workshop: http://vim-iip.jouy.inra.fr:8080/statomique/

Briefings in Bioinformatics Advance Access published September 17, 2012 BRIEFINGS IN BIOINFORMATICS. page 1 of 13 doi:10.1093/bib/bbs046

A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis

Marie-Agnès Dillies^{*}, Andrea Rau^{*}, Julie Aubert^{*}, Christelle Hennequet-Antier^{*}, Marine Jeanmougin^{*}, Nicolas Servant^{*}, Céline Keime^{*}, Guillemette Marot, David Castel, Jordi Estelle, Gregory Guernec, Bernd Jagla, Luc Jouneau, Denis Laloë, Caroline Le Gall, Brigitte Schaëffer, Stéphane Le Crom^{*}, Mickaël Guedj^{*}, Florence Jaffrézic^{*} and on behalf of The French StatOmique Consortium

Submitted: I2th April 2012; Received (in revised form): 29th June 2012

Normalized data distribution

An effective normalization should result in a stabilization of read counts across samples

Figure : Effects of normalization on E. histolytica data.

Results

- most of the methods yield comparable results
- RPKM and TC that do not improve over the raw counts (sensitive to high count genes)

Effect of normalization on housekeeping genes

Method

Assumption: housekeeping genes are similarly expressed across samples

- > 30 housekeeping genes selected from a list previously described in Eisenberg et Levanon (2003)
- average the coefficient of variation of housekeeping genes

Figure : Variation in expression among a set of housekeeping genes

Results

DESeq and TMM normalization methods lead to smallest coefficient of variation

In most cases

The methods yield similar results

However ..

Differences appear based on data characteristics

Method	Distribution	Intra-Variance	Housekeeping	Clustering	False-positive rate
TC	-	+	+	-	-
UQ	++	++	+	++	-
Med	++	++	-	++	-
DESeq	++	++	++	++	++
\mathbf{TMM}	++	++	++	++	++
FQ	++	-	+	++	-
RPKM	-	+	+	-	-

- RNA-seq data are affected by biaises (total number of mapped reads per sample, gene length, composition bias)
- Csq1: non-uniformity of the distribution of reads along the genome
- Csq2: technical variability within and between-sample
- A normalization is needed and has a great impact on the DE genes (Bullard et al 2010), (Dillies et al 2012)
- TC, RPKM, UQ Adjustment of distributions, implies a similarity between RNA repertoires expressed
- DESeq, TMM More robust ratio of counts using several samples, suppose that the majority of the genes are not DE.
- RUVSeq Powerful when a large set of control genes can be identified

- RNA-seq data are affected by biaises (total number of mapped reads per sample, gene length, composition bias)
- Csq1: non-uniformity of the distribution of reads along the genome
- Csq2: technical variability within and between-sample
- A normalization is needed and has a great impact on the DE genes (Bullard et al 2010), (Dillies et al 2012)
- TC, RPKM, UQ Adjustment of distributions, implies a similarity between RNA repertoires expressed
- DESeq, TMM More robust ratio of counts using several samples, suppose that the majority of the genes are not DE.
- RUVSeq Powerful when a large set of control genes can be identified

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

Introduction to differential analysis

- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

What is differential gene expression ?

A gene is declared differentially expressed (DE) if an observed difference or change in expression between two experimental conditions is statistically significant^a

How to determine the level of significance ?

- → Statistical tools (hypothesis testing)
- --- Statistical tools for RNA-seq need to analyze read-count distributions

^agreater than expected just due to natural random variation

Often used to compare expression levels in different conditions:

- Tissue: liver *vs.* brain
- Treatment: drugs A, B, and C
- State: healthy controls vs. patient
- Across time

What is differential gene expression ?

A gene is declared differentially expressed (DE) if an observed difference or change in expression between two experimental conditions is statistically significant^a

How to determine the level of significance ?

- → Statistical tools (hypothesis testing)
- --- Statistical tools for RNA-seq need to analyze read-count distributions

^agreater than expected just due to natural random variation

Often used to compare expression levels in different conditions:

- Tissue: liver *vs.* brain
- Treatment: drugs A, B, and C
- State: healthy controls vs. patient
- Across time

The key notions are:

- formulate the testing hypothesis: null hypothesis versus alternative
- **p-value** computation: probability of observing the data given that a hypothesis is true
- type I and type II errors
- **4 multiple-testing**: control of the FDR (false discovery rate)

Formulate the null hypothesis

- → The statement being tested in a test of statistical significance is called the null hypothesis
- --- The null hypothesis is usually a statement of no effect or no difference

Example

Let q_i be the expression level of gene *i*. We have access to measurements of q_i in two groups *A* and *B*. ie we observe $(q_{i1}^A, q_{i2}^A, ...)$ and $(q_{i1}^B, q_{i2}^B, ...)$ (biological replicates in both groups).

- \rightarrow $H_0: q_i^A$ and q_i^B follow the same distribution
- \rightarrow $H_0: q_i^A$ and q_i^B have equal mean

Formulate the null hypothesis

- → The statement being tested in a test of statistical significance is called the null hypothesis
- --- The null hypothesis is usually a statement of no effect or no difference

Example t-test

We suppose:

$$\blacktriangleright q_i^A \sim N(\mu_i^A, \sigma)$$

$$\blacktriangleright q_i^B \sim N(\mu_i^B, \sigma)$$

$$\rightsquigarrow$$
 $H_0: \mu_i^A = \mu_i^B$

p-value is the probability of an observed (or more extreme) result assuming that the null hypothesis is true

 $p = P(\text{observation} | H_0 \text{ is true})$

▶ p "small" means that H₀ is likely to be "false"

P-value

p-value is the probability of an observed (or more extreme) result assuming that the null hypothesis is true

 $p = P(\text{observation} | H_0 \text{ is true})$

▶ p "small" means that H₀ is likely to be "false"

Example t-test

We suppose:

•
$$q_i^A \sim N(\mu_i^A, \sigma)$$
 and $q_i^B \sim N(\mu_i^B, \sigma)$

t-statistic

$$t = \frac{\bar{q}_i^A - \bar{q}_i^B}{s/\sqrt{n}}$$

obtained p-value (the t-statistic follows a Student law under H₀)

 $p = P(T \geq t | H_0)$

P-value

p-value is the probability of an observed (or more extreme) result assuming that the null hypothesis is true

 $p = P(\text{observation} | H_0 \text{ is true})$

▶ p "small" means that H₀ is likely to be "false"

• "uncorrecting testing" reject H_0 if $p \le \alpha$ (eg, $\alpha = 0.05$)

	H _o True	H _o False
Reject H_0	Type I Error	Correct Rejection
Fail to Reject H₀	Correct Decision	Type II Error

- type I error = false positive = FP
- type II error = false negative = FN

- Gives $P(FP_i) \le \alpha$ for all $1 \le i \le n$
- Many type I errors (FP)
- ▶ eg: 10000 genes that are not DE. Significance level $\alpha = 0.05$. But 10000x0.05 = 500 genes will be call DE "by chance".

Control of the type I error

- e.g.: **Bonferroni**: use per-comparison significance level α/n
- Guarantees $P(FP) \leq \alpha$
- Very conservative

3 Control of the FDR false discovery rate

- first defined by Benjamini-Hochberg (BH, 1995, 2000)
- Guarantees $FDR = \mathbb{E}\left(\frac{FP}{FP+TP}\right) \leq \alpha$
- finding 100 DE genes with only 2 FP seems better than finding 6 DE genes with 2 FP ...

- Gives $P(FP_i) \le \alpha$ for all $1 \le i \le n$
- Many type I errors (FP)
- eg: 10000 genes that are not DE. Significance level $\alpha = 0.05$. But 10000x0.05 = 500 genes will be call DE "by chance".

2 Control of the type I error

- e.g.: **Bonferroni**: use per-comparison significance level α/n
- Guarantees $P(FP) \leq \alpha$
- Very conservative

3 Control of the FDR false discovery rate

- first defined by Benjamini-Hochberg (BH, 1995, 2000)
- Guarantees $FDR = \mathbb{E}\left(\frac{FP}{FP+TP}\right) \leq \alpha$
- finding 100 DE genes with only 2 FP seems better than finding 6 DE genes with 2 FP ...

- Gives $P(FP_i) \le \alpha$ for all $1 \le i \le n$
- Many type I errors (FP)
- eg: 10000 genes that are not DE. Significance level $\alpha = 0.05$. But 10000x0.05 = 500 genes will be call DE "by chance".

2 Control of the type I error

- e.g.: **Bonferroni**: use per-comparison significance level α/n
- Guarantees $P(FP) \leq \alpha$
- Very conservative

3 Control of the FDR false discovery rate

- first defined by Benjamini-Hochberg (BH, 1995, 2000)
- Guarantees $FDR = \mathbb{E}\left(\frac{FP}{FP+TP}\right) \leq \alpha$
- finding 100 DE genes with only 2 FP seems better than finding 6 DE genes with 2 FP ...

- Gives $P(FP_i) \le \alpha$ for all $1 \le i \le n$
- Many type I errors (FP)
- eg: 10000 genes that are not DE. Significance level $\alpha = 0.05$. But 10000x0.05 = 500 genes will be call DE "by chance".

2 Control of the type I error

- e.g.: **Bonferroni**: use per-comparison significance level α/n
- Guarantees $P(FP) \leq \alpha$
- Very conservative
- 3 Control of the FDR false discovery rate
 - first defined by Benjamini-Hochberg (BH, 1995, 2000)
 - Guarantees $FDR = \mathbb{E}\left(\frac{FP}{FP+TP}\right) \leq \alpha$
 - finding 100 DE genes with only 2 FP seems better than finding 6 DE genes with 2 FP ...

Differential analysis gene-by-gene

institutCurie Insertita, prevers la casar de viense

Strategy

Differential expression gene-by-gene:

For each gene *i*, is there a significant difference in expression between the condition 1 and condition 2?

Statistical model (definition and parameter estimation)

Testing for differential expression:

$$H_{0i}:\mu_{i1}=\mu_{i2}$$

State of the art

- An abundant literature
 - Fisher's exact test
 - Poisson model
 - Negative Binomial model (DESeq,edgeR)
- Comparison of methods (Pachter et al. 2011, Kvam and Liu 2012, Soneson and Delorenzi 2013)

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

can be used for RNA-seq without replicates, on a gene-by-gene basis, organizing the data in a 2 x 2 contingency table

	condition 1	condition 2	Total
Gene i	X _{i1}	X _{i2}	X _{i.}
Remaining genes	$\sum_{g\neq i} x_{g1}$	$\sum_{g\neq i} x_{g2}$	∑ _{g≠i} x _{g.}
Total	X .1	X.2	X

Null hypothesis

The proportion of counts for some gene *i* amongst two samples is the same as that of the remaining genes:

 $H_{0i}: \frac{\pi_{i1}}{\pi_{i2}} = \frac{\pi_{g1}}{\pi_{g2}}$

where π_{i1} is the true (unknown) proportion of counts in sample 1

 \rightsquigarrow we can calculate the p-value $p = P(readcount \ge x_{i1}|H_0)$ exactly using the hypergeometric law (one or two-sided Fisher exact test)

can be used for RNA-seq without replicates, on a gene-by-gene basis, organizing the data in a 2 x 2 contingency table

	condition 1	condition 2	Total
Gene i	X _{i1}	X _{i2}	X _{i.}
Remaining genes	$\sum_{g \neq i} x_{g1}$	$\sum_{g \neq i} x_{g2}$	$\sum_{g \neq i} x_{g.}$
Total	X .1	X.2	X

Null hypothesis

The proportion of counts for some gene *i* amongst two samples is the same as that of the remaining genes:

$$H_{0i}:\frac{\pi_{i1}}{\pi_{i2}}=\frac{\pi_{g1}}{\pi_{g2}}$$

where π_{i1} is the true (unknown) proportion of counts in sample 1

→ we can calculate the p-value $p = P(readcount \ge x_{i1}|H_0)$ exactly using the hypergeometric law (one or two-sided Fisher exact test)

> countTable

	condition 1	condition 2	Total
Gene 1	216	160	376
Remaining genes	28,351,805	21,934,509	50,286,314
Total	28,352,021	21,934,669	50,286,690

```
> fisher.test(countTable)
Fisher's Exact Test for Count Data
data: countTable
p-value = 0.7159
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.847 1.289
sample estimates:
odds ratio
    1.04
```

→ if test for many genes, need to adjust p-value for multiple-testing!

Need for replicates!

Without replication:

- complete lack of knowledge about biological variation.
- **no sound statistical basis** for inference of differences between the groups.

Tarazona, S. et al. (2011) Genome Research

"We propose a novel methodology for the assessment of differentially expressed features, NOISeq, that empirically models the noise in count data, is reasonably robust against the choice of SD, and can work in the absence of replication."

Need for replicates!

red: significant genes according to Fisher test (at 10% FDR)

Figure : Fly cell culture, knock-down of pasilla (from Simon Anders)

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test

The poisson model and its limitations

Negative Binomial alternative
Poisson model – Intuition

Need to model:

non-negative integer values (count data)

From the Binomial law to the Poisson distribution:

- e.g., a series of n = 10 coin flips, each of which has a probability of p = 5 of heads
- The binomial distribution gives us the probability of observing *k* heads

$$p(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Event: An RNAseq read "lands" in a given gene (success) or not (failure)

• $\mathcal{B}(n,p)$ converges to $\mathcal{P}(\lambda = np)$ when N >> p

Marioni, J. et al. (2008) Genome Research

The number of reads that are mapped into a gene was first modeled using a Poisson distribution

$$P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!},$$

with $\lambda > 0$.

→ only one parameter is needed to determine the probability of an event

- Poisson distribution naturally appears for count data
- It assumes that mean and variance are the same:

$$\lambda = \mathsf{E}(X) = \mathsf{Var}(X)$$

no need to estimate the variance (convenient!)

Poisson (mean = variance)

51

Limitations of the poisson model

The variance grows faster than the mean in RNAseq data.

Figure : Mean count vs variance of RNA seq data. Orange line: the fitted observed curve. Purple: the variance implied by the Poisson distribution.

Anders S, Huber W (2010) Genome Biol

Limitations of the poisson model

The variance grows faster than the mean in RNAseq data.

Figure : Mean count vs variance of RNA seq data. Orange line: the fitted observed curve. Purple: the variance implied by the Poisson distribution.

Overdispersion in RNA-seq data ! \rightsquigarrow counts from biological replicates tend to have variance exceeding the mean

What is the impact of overdispersion ?

 \rightsquigarrow overdispersion \Rightarrow underestimation of the biological variance

Let us consider this question using the tdistribution:

$$t_i = rac{ar{x}_{i.}^{(1)} - ar{x}_{i.}^{(2)}}{rac{S}{\sqrt{n}}},$$

where

- S is the sample standard deviation,
- n is the sample size

 \rightsquigarrow Underestimation of the variance \Rightarrow overestimation of t_i

Figure : Empirical cumulative distribution functions (ECDFs) of p-values. No genes are truly differentially expressed, and the ECDF curves (blue) should remain below the diagonal (gray)

→ Overdispersion will lead to an increased type I error rate (probability to falsely declare a gene DE)

What is the impact of overdispersion ?

 \rightsquigarrow overdispersion \Rightarrow underestimation of the biological variance

Let us consider this question using the tdistribution:

$$t_i = rac{ar{x}_{i.}^{(1)} - ar{x}_{i.}^{(2)}}{rac{S}{\sqrt{n}}},$$

where

- S is the sample standard deviation,
- n is the sample size
- \rightsquigarrow Underestimation of the variance \Rightarrow overestimation of t_i

Figure : Empirical cumulative distribution functions (ECDFs) of p-values. No genes are truly differentially expressed, and the ECDF curves (blue) should remain below the diagonal (gray)

→ Overdispersion will lead to an increased type I error rate (probability to falsely declare a gene DE)

Outline

1 Normalization approaches

- Within-sample biases
- Between-sample biases
- Comparison of normalization methods

2 Differential expression

- Introduction to differential analysis
- Fisher's exact test
- The poisson model and its limitations
- Negative Binomial alternative

Parametric approaches

Method	Model	Reference
baySeq	NB	Hardcastle TJ and Kelly KA (2010)
EBSeq	NB	Leng N (2012)
ShrinkSeq	NB (zero-inflated)	Van de Wiel MA et al. (2012)
edgeR	NB	Robinson MD et al. (2010)
DESeq	NB	Anders S and Huber W (2010)
NBPSeq	over-parameterized NB	Di Y et al. (2011)
TSPM	poisson	Auer PL and Doerge RW (2011)

Non-parametric strategies

- NOISeq (Tarazona S et al. 2011)
- SAMseq (Li J and Tibshirani R 2011)

Transformation-based methods

 \rightsquigarrow aim to find a transformation for counts to analyze them by traditional methods

- voom + limma
- vst + limma

The negative binomial distribution can be used as an alternative to the Poisson distribution:

$$X_{ij} \sim NB(\mu_{ij}, \phi_i)$$

where:

- $\blacksquare E(X_{ij}) = \mu_{ij}$
- $Var(X_{ij}) = \mu_{ij} + \phi_i \mu_{ij}^2$
- ϕ_i is the dispersion parameter

The variance is always larger than the mean for the negative binomial \Rightarrow suitable for RNA-seq data

Negative binomial distribution

NB(10,0.25)

NB(10,0.5)

100

Many genes, few biological samples - difficult to estimate ϕ on a gene-by-gene basis Some proposed solutions:

Method	Variance
DESeq	$\mu(1 + \phi_{\mu}\mu)$
edgeR	$\mu(1+oldsymbol{\phi}\mu)$
NBPseq	$\mu(1+\phi\mu^{\alpha-1})$

DESeq

data-driven relationship of variance and mean estimated using local regression for robust fit across genes

edgeR

Borrow information across genes for stable estimates of ϕ . 3 ways to estimate ϕ : common, trended, tagwise (moderated)

NBPSeq

NBP includes two parameters ϕ and α , estimated from all the genes

Some practical considerations

- Data must be input as raw counts (and not RPKM or FPKM values): normalization offsets are included in the model
- Each column should be an independent biological replicate
- Multi-factor designs now included
- Check out the DESeq Users'Guide for examples http://www.bioconductor.org/packages/devel/bioc/vignettes/ DESeq/inst/doc/DESeq.pdf

Version matters !

Step 1 : creation of a CountDataSet object									
> head(countTable)									
	untreated3	untreated4	treated2	treated3					
FBgn0000003	0	0	0	1					
FBgn0000008	76	70	88	70					
FBgn0000014	0	0	0	0					
FBgn0000015	1	2	0	0					
> condition [1] untreated untreated treated Levels: treated untreated									
<pre># We can now ins in the DESeq pack > cds = newCountD</pre>	tantiate a Coun age) ataSet(countTa	tDataSet (ce ble, conditi	ntral data on)	structure					

Step 2 : Normalization

# es	stimate	the	effective	library	size
------	---------	-----	-----------	---------	------

- > cds <- estimateSizeFactors(cds)</pre>
- > sizeFactors(cds)
 treated2fb treated3fb untreated3fb untreated4fb
 1.297 1.042 0.818 0.911

If we divide each column of the count table by the size factor for this column, the count values are brought to a common scale

>	head(cour	nts(cds, n	cds, normalized=TRUE))				
			untreated3	untreated4	treated2	treated3		
FΗ	3gn0000	003	0.00	0.00	0.0	0.897		
FΗ	3gn0000	8000	87.05	69.27	86.1	62.803		
FΗ	3gn0000	014	0.00	0.00	0.0	0.000		
FF	3gn0000	015	1.15	1.98	0.0	0.000		

Step 3: Differential analysis

> cds <- estimateDispersions(cds)
estimates a dispersion value for each gene
fits a curve through the estimates
assigns to each gene a dispersion value
(choice between the per-gene estimate and the fitted value)</pre>

> plotDispEsts(cds) # estimates against the mean normalized counts

DESeq: Main commands

Results:

63

> head(res)

	id	baseMean	baseMeanA	baseMeanB	foldChange	log2FoldChange	pval	padj
FBgn000008	3	91.78	93.05	90.51	0.973	-0.0399	1.000	1.000
FBgn0000014	1	1.93	0.00	3.85	Inf	Inf	0.378	0.913
FBgn000001	7 399	95.15	4340.18	3650.11	0.841	-0.2498	0.276	0.845
FBgn0000018	3 3	344.22	342.43	346.01	1.010	0.0150	0.896	1.000
FBgn0000024	1	5.65	4.09	7.21	1.763	0.8180	0.525	0.972
FBgn0000032	2 102	25.52	1038.25	1012.79	0.975	-0.0358	0.801	1.000

>> plot(res\$baseMean, res\$log2FoldChange, log="x", pch=20, cex=.3, + col = ifelse(res\$padj < .1, "red", "black"))</pre>

mean of normalized counts

multiple testing correction: here genes are called DE if adjusted p-value are below 10% FDR

DESeq: Main commands

Results:

> head(res)

	id	baseMean	baseMeanA	baseMeanB	foldChange	log2FoldChange	pval	padj
FBgn000008	3	91.78	93.05	90.51	0.973	-0.0399	1.000	1.000
FBgn0000014	1	1.93	0.00	3.85	Inf	Inf	0.378	0.913
FBgn000001	7 399	95.15	4340.18	3650.11	0.841	-0.2498	0.276	0.845
FBgn0000018	3 3	344.22	342.43	346.01	1.010	0.0150	0.896	1.000
FBgn0000024	1	5.65	4.09	7.21	1.763	0.8180	0.525	0.972
FBgn0000032	2 102	25.52	1038.25	1012.79	0.975	-0.0358	0.801	1.000

>> plot(res\$baseMean, res\$log2FoldChange, log="x", pch=20, cex=.3, + col = ifelse(res\$padj < .1, "red", "black"))</pre>

mean of normalized counts

multiple testing correction: here genes are called DE if adjusted p-value are below 10% FDR

What happens after a differential analysis?

Further analysis

- Test for enriched functional categories (i.e., do differentially expressed genes tend to share the same function?)
- Clustering of genes (i.e., co-expression analysis)
- Inference of gene networks
- Integration with other data (epigenomic, metabolomic, proteomic, ...)

Biological validation

- Gene knock-down experiments
- qPCR validation

Thank you !

* Slides inspired from Marine Jeanmougin, Julie Aubert, Laurent Jacob, Simon Anders, Michael Love and Peter N. Robinson