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Gene/exon quantification or Estimation of transcript expression

» need for normalization
» previous to differential expression analysis
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Gene/exon quantification or Estimation of transcript expression

» need for normalization
» previous to differential expression analysis
Detection of (novel) alternative splicing isoforms
Potential Potential

Reference genome sequence novel intron  novel exon

Sequencing
reads



Gene/exon quantification or Estimation of transcript expression

» need for normalization
» previous to differential expression analysis

Detection of (novel) alternative splicing isoforms

Fusion genes identification

pre-mRNA pre-mRNA
(Gene 1) (Gene 2)

End-paired
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Gene/exon quantification or Estimation of transcript expression

» need for normalization
» previous to differential expression analysis

Detection of (novel) alternative splicing isoforms

Fusion genes identification
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Pre-processing

Quality control

- total number of reads

- number of reads per barcode
- platform-specific quality scores
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Condition B

TopHat / BWA ...

- samplel.bam , sample2.bam ....

Alignment quality
- alignment score
- uniquely mapped reads
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Condition A \ / Condition B

Pre-processing
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* Exploratory data analysis

[P . - PCA, clustering ...
Statistical analysis Differential analysis
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= Matrix of counts (non-negative integer values)
m Each column: one experimental unit (sample)

m Each row: one variable (gene, exon)

Pasilla data

Study of the transcriptomic effect of RNAi knockdown on the Pasilla gene in
Drosophila melanogaster

> require (pasilla)
> data ("pasillaGenes")
> head (counts (pasillaGenes))

treated1fb treated2fb treated3fb untreatedifb untreated2fb untreated3fb untreated4fb

FBgn0000003 0 1 1 0 0 0 0
FBgn0000008 118 139 7 89 142 84 76
FBgn0000014 0 10 0 1 1 0 0
FBgn0000015 0 0 0 0 0 1 2
FBgn0000017 4852 4853 3710 4640 7754 4026 3425

FBgn0000018 572 497 322 552 663 272 321




Normalization approaches

m Within-sample biases

m Between-sample biases

m Comparison of normalization methods

Differential expression

m Introduction to differential analysis

m Fisher’s exact test

m The poisson model and its limitations
m Negative Binomial alternative



Normalization approaches
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An essential step in the analysis of gene expression:
= to compare gene expressions from a same sample

m to compare genes from different samples (differential analysis)

Definition

Normalization is a process designed to identify and correct technical biases
removing the least possible biological signal.

» batch effects (library prep, sequencing technology, ...)
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An essential step in the analysis of gene expression:
= to compare gene expressions from a same sample

m to compare genes from different samples (differential analysis)

Definition

Normalization is a process designed to identify and correct technical biases
removing the least possible biological signal.

» batch effects (library prep, sequencing technology, ...)

Goals

» accurate estimation of gene expression levels

» reliable differential expression analysis

Normalization has a great impact on DE results! (Bullard et al 2010, Dillies et al 2012)
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Within-sample
m Gene length

m Nucleotide composition (GC content)

Between-sample

m Library size (number of mapped reads)

m Batch effects
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Within-sample
m Gene length

m Nucleotide composition (GC content)

Between-sample

m Library size (number of mapped reads)

m Batch effects

A lot of different normalization methods...

m Some are part of models for DE, others are 'stand-alone’

m They do not rely on similar hypotheses
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® kj : number of reads for gene i in sample j (observed)
m L;:length of gene i

m g; : expression level of gene i in sample j (quantity of interest, unobserved)

m N, : library size of sample j

= s; : scaling factor associated with sample j
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Normalization approaches
m Within-sample biases



m At the same expression level, a long gene will have more reads than a shorter
one!

« [oxa)




m The higher sequencing depth, the higher counts!

« [~

sample 1

sample 2
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A very intuitive approach to try to correct for length + depth biases

RPKM (Reads per Kilo base per Million mapped reads)

Mortazavi, A. et al. (2008) Nature Methods

Normalization for RNA length and for library size:

9 .
RPKM; — 107 X k;

where:
® kj: number of reads for gene i in sample j
m N;: library size for sample j (in millions)

m L;: length of gene i in base pair
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Gene A 600 bases Gene B 1100 bases Gene C 1400 bases

RPKM = 12/(0.6%6) =3.33 RPKM =24/(1.1%6) =3.64  RPKM = 11/(1.4%6) = 1.31

RPKM =19/(0.6*8) =3.96 RPKM =28/(1.1*8) =1.94 RPKM = 16/(1.4*8) = 1.43

Figure : RPKM calculation
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Normalization approaches

m Between-sample biases



Unnormalized counts
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Zebrafish data analysis from Risso et al., 2014.
Green: control samples. Purple: treated samples.
RLE: relative |Og expression (comparable samples should have similar RLE distributions centered around 0)

Risso, D. et al. (2014) Nature Biotech



_‘wtﬁe{f ‘

global scaling factor (using one sample)

global scaling factor (using several samples)

additive effects (regression-based)
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global scaling factor (using one sample)

> [ =sw

> S 2?

global scaling factor (using several samples)

additive effects (regression-based)
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global scaling factor (using one sample)

> [ =sw

| 2 §j 2?
» Total number of reads : TC (Marioni et al. 2008)
» Upper Quartile : UQ (Bullard et al. 2010)

global scaling factor (using several samples)

additive effects (regression-based)
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global scaling factor (using one sample)

> [ =sw

| 2 §j 2?

» Total number of reads : TC (Marioni et al. 2008)

» Upper Quartile : UQ (Bullard et al. 2010)
global scaling factor (using several samples)

» more robust

» Anders and Huber 2010 - Package DESeq
» Trimmed Mean of M-values TMM - Package edgeR

additive effects (regression-based)
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global scaling factor (using one sample)

> [ =sw

| 2 §j 2?

» Total number of reads : TC (Marioni et al. 2008)

» Upper Quartile : UQ (Bullard et al. 2010)
global scaling factor (using several samples)

» more robust

» Anders and Huber 2010 - Package DESeq

» Trimmed Mean of M-values TMM - Package edgeR
additive effects (regression-based)

» estimate technical effects with control genes
» Remove Unwanted Variation - Package RUVseq



_iwtﬁeﬂ? ‘

global scaling factor (using one sample)

- [ =5a1

> S 2?

A N:
Total number of reads TC — S} = +——1—
/ 15 Z/ Ny

» intuitive but total read count is strongly dependent on a few highly expressed
transcripts

Upper Quartile UQ — §j = with Q3 the 75-th quantile.

Q3;
1E Z/ Qg3
» calculate Q3 after exclusion of genes with no read count
» more robust to highly express genes
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>

dim(counts (pasillaGenes))

14470 7

>
>

# Upper Quartile normalization
sc = apply (counts (pasillaGenes), 2,

FUN=function (x) quantile (x[x!=0],probs=3/4))
scaling.factor = sc / mean(sc)

print (scaling.factor)

treatedlfb treated2fb treated3fb

1.3120821 0.7722063 0.8825215

untreatedlfb untreated2fb untreated3fb untreated4fb
1.0195798 1.4925979 0.7320917 0.7889207

counts.normalized = t (t (counts (pasillaGenes))/scaling.factor)

20
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global scaling factor (using several samples)

- [ =sa]

> 5?7

DESeq (Anders and Huber 2010)
Trimmed Mean of M-values TMM (Robinson et al. 2010)

» A few highly differentially expressed genes have a strong influence on read count
~ highly differentialy expressed genes may distort the ratio of total reads
~ the total number of read is not a reasonable choice for s;

» Aim: minimizing effect of such genes

A majority of transcripts is not differentially expressed I

21
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General idea

Let us consider two replicated samples, indexed with j = 1 and j = 2.

Given that the samples are replicates we expect the ratio of counts to be the "same"
for all genes:

> Vi, 1 should be the same

» of course not exactly constant! but narrow distribution around its mode

> S= median,%: a good estimate of the sequencing depth ratio
» if j =1 andj = 2 are not replicates the median should still be a good estimate

as long as few genes are DE.
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General idea

Let us consider two replicated samples, indexed with j = 1 and j = 2.

Given that the samples are replicates we expect the ratio of counts to be the "same"
for all genes:

> Vi, 1 should be the same
» of course not exactly constant! but narrow distribution around its mode

kit

» S = median; wra good estimate of the sequencing depth ratio

» if j =1 andj = 2 are not replicates the median should still be a good estimate
as long as few genes are DE.

~~ Need to be generalized to more than 2 samples:
» need to compare all samples to a same reference
» definition of a fictive "reference sample" against which to compare everything:

m 1/m
kiref _ H kij
j=1




Generalization

Calculation of the scaling factor:

" . ki
S = medlan,W
1
where:
m kj: number of reads in sample j assigned to gene i

m denominator: reference sample created from geometric mean across samples

R package DEseq:

B estimateSizeFactors (): estimate the size factors for a "CountDataSet"
object

23
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> require (DESeq)

> # estimate the size factors:
> pasillaGenes <- estimateSizeFactors( pasillaGenes )

> print ( sizeFactors(pasillaGenes) )

treatedlfb treated2fb treated3fb
1.5116926 0.7843521 0.8958321

untreatedlfb untreated2fb untreated3fb untreated4fb
1.0499961 1.6585559 0.7117763 0.7837458

\4

# understand what happen!
# calculate the gene-wise geometric means
geomeans <- exp( rowMeans( log( counts(pasillaGenes) ) ) )

VvV Vv

# Plot a histogram of the ratios

# ratio of sample 1 over the reference

hist (log2( counts(pasillaGenes) [,1] / geomeans ), breaks=100)
abline (v=1og2 ( sizeFactors(pasillaGenes)[ J ] ), col="red")

vV V. V Vv

24



_iwtﬁeﬂ? ‘

# Plot a histogram of the ratios

# ratio of sample 1 over the reference

hist (log2( counts(pasillaGenes) [,1] / geomeans ), breaks=100)
abline (v=1log2( sizeFactors (pasillaGenes)[ j ] ), col="red")

vV V. V V

Histogram of log2(counts(pasillaGenes)[, jl/geomeans)

400
I

Frequency
0 100 200 300
I I I

25
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additive effect (regression-based)
» uses control genes (housekeeping genes, spike-in) to estimate technical noise

» estimate a gene-specific nuisance effect

RUVSeq (Risso et al. 2014). R package RUVSeq

26
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additive effect (regression-based)
» uses control genes (housekeeping genes, spike-in) to estimate technical noise

» estimate a gene-specific nuisance effect

RUVSeq (Risso et al. 2014). R package RUVSeq

» factor of interest x; (e.g. outcome) for sample j, its effect 3; on gene .
» unwanted factor w; (e.g. batch) for sample j, its effect o; on gene j.

> log kj = X;Bi + Wi + €

» control genes are not affected by the factor of interest X

Bc = 0 for control gene c. Hence log ke = Wae + ec.

estimate W by PCA. .
plug back W in the model and do a regression to get 5 and &

remove Wé from log k

26



Unnormalized counts c RUV normalization
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Zebrafish data analysis from Risso et al., 2014.
Green: control samples. Purple: treated samples.
RLE: relative |Og expression (comparable samples should have similar RLE distributions centered around 0)

Risso, D. et al. (2014) Nature Biotech

27



Normalization approaches

m Comparison of normalization methods

28
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Which method should you use for normalization of
RNA-Seq data ?

» How to choose a normalization adapted to your experiment ?

» What is the impact of the normalization step on the downstream analysis ?

29



StatOmique workshop: http://vim-iip.jouy.inra.fr:8080/statomique/

Briefinqs in Bioinformatics Advance Access published September 17, 2012
BRIEFINGS IN BIOINFORMATICS. page | of 13 doi:10.1093/bib/bbs046

A comprehensive evaluation of
normalization methods for lllumina
high-throughput RNA sequencing
data analysis

Marie-Agnes Dillies”, Andrea Rau”, Julie Aubert”, Christelle Hennequet-Antier", Marine Jeanmougin®,

Nicolas Servant®, Céline Keime”, Guillemette Marot, David Castel, Jordi Estelle, Gregory Guernec, Bernd Jagla,

Luc Jouneau, Denis Laloé, Caroline Le Gall, Brigitte Schaéffer, Stéphane Le Crom*, Mickaél Guedj*, Florence ]affrézic*
and on behalf of The French StatOmique Consortium

Submitted: 12¢h April 2012; Received (in revised form): 29th June 2012

30
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An effective normalization should result in a stabilization of read counts across
samples

“ IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

TC uo Med DESeq T™M Q RPKM  RawCount

Figure : Effects of normalization on E. histolytica data.

m most of the methods yield comparable results

m RPKM and TC that do not improve over the raw counts (sensitive to high count
genes)




Assumption: housekeeping genes are similarly expressed across samples
» 30 housekeeping genes selected from a list previously described in Eisenberg et Levanon (2003)

» average the coefficient of variation of housekeeping genes

0.200 0.205 0.210

Average coefficient of variation

0.195

Tc uQ Med  DESeq  TMM FQ  RPKM RawCount

Figure : Variation in expression among a set of housekeeping genes

DESeq and TMM normalization methods lead to smallest coefficient of variation




The methods yield similar results

However ...

Differences appear based on data characteristics

Method  Distribution Intra-Variance

Housekeeping  Clustering False-positive rate

TC = + + - -
uQ ++ ++ + ++ -
Med ++ ++ - ++ =
DESeq ++ ++ ++ ++ ++
TMM ++ ++ ++ ++ ++
FQ ++ - + ++ -
RPKM - + + - -

33
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RNA-seq data are affected by biaises (total number of mapped reads per
sample, gene length, composition bias)

Csq1: non-uniformity of the distribution of reads along the genome

Csq2: technical variability within and between-sample

A normalization is needed and has a great impact on the DE genes (Bullard et al
2010), (Dillies et al 2012)

34
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= RNA-seq data are affected by biaises (total number of mapped reads per
sample, gene length, composition bias)

m Csq1: non-uniformity of the distribution of reads along the genome
m Csq2: technical variability within and between-sample

m A normalization is needed and has a great impact on the DE genes (Bullard et al
2010), (Dillies et al 2012)

m TC, RPKM, UQ Adjustment of distributions, implies a similarity between RNA
repertoires expressed

m DESeq, TMM More robust ratio of counts using several samples, suppose that the
majority of the genes are not DE.

m RUVSeq Powerful when a large set of control genes can be identified

34



Differential expression

35
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Differential expression
m Introduction to differential analysis

36
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What is differential gene expression ?

A gene is declared differentially expressed (DE) if an observed difference or change in
expression between two experimental conditions is statistically significant?

How to determine the level of significance ?
~ Statistical tools (hypothesis testing)

~ Statistical tools for RNA-seq need to analyze read-count distributions

4greater than expected just due to natural random variation
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What is differential gene expression ?

A gene is declared differentially expressed (DE) if an observed difference or change in
expression between two experimental conditions is statistically significant?

How to determine the level of significance ?
~ Statistical tools (hypothesis testing)

~ Statistical tools for RNA-seq need to analyze read-count distributions

4greater than expected just due to natural random variation

Often used to compare expression levels in different conditions:
m Tissue: liver vs. brain
m Treatment: drugs A, B, and C
m State: healthy controls vs. patient

m Across time
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The key notions are:
formulate the testing hypothesis: null hypothesis versus alternative

p-value computation: probabilty of observing the data given that a hypothesis is
true

type | and type Il errors

multiple-testing: control of the FDR (false discovery rate)

38
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Formulate the null hypothesis

~ The statement being tested in a test of statistical significance is called the null
hypothesis

~ The null hypothesis is usually a statement of no effect or no difference

Let g; be the expression level of gene i.
We have access to measurements of g; in two groups A and B.
ie we observe (g, g,...)and (g5, g3,...) (biological replicates in both groups).

~ Hy: gf* and g? follow the same distribution .- :
~ Hp: g® and g® have equal mean 2- 3
s
0- Be

A
cond
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Formulate the null hypothesis

~ The statement being tested in a test of statistical significance is called the null
hypothesis

~ The null hypothesis is usually a statement of no effect or no difference

Example t-test

We suppose:
> Qf\ ~ N(H;'Aa U)

> qIBNN(NIBaU)

~ Ho: pft = pf
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p-value is the probability of an observed (or more extreme) result assuming that the
null hypothesis is true
p = P(observation | H is true)

» p "small" means that Hy is likely to be "false"

40



p-value is the probability of an observed (or more extreme) result assuming that the
null hypothesis is true

p = P(observation | H is true)

» p "small" means that Hy is likely to be "false"

Example t-test

We suppose:
> g ~ N(uf', o) and gf ~ N(u8, o)

» t-statistic ~ 5
t— Q:A — G
s/v/n

» obtained p-value (the t-statistic follows a Student law under Hp)

p = P(T > t|Ho)

40



p-value is the probability of an observed (or more extreme) result assuming that the
null hypothesis is true

p = P(observation | Hp is true)

» p "small" means that Hy is likely to be "false"

Probability density

More likely observation

\

1

P-value

Very un-likely
observations

Very un-likely
observations

Observed

data point\
*

Set of possible results

40
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» "uncorrecting testing" reject Hp if p < a (eg, a = 0.05)

Correct
Rejection

Type | Error

Correct

Becision Type ll Error

» type | error = false positive = FP
» type Il error = false negative = FN

41
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"Uncorrected testing"

Control of the type | error

Control of the FDR false discovery rate

42
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"Uncorrected testing"

» Gives P(FP;) < aforall1 <i<n
» Many type | errors (FP)

» eg: 10000 genes that are not DE. Significance level o = 0.05. But
10000x0.05 = 500 genes will be call DE "by chance".

Control of the type | error

Control of the FDR false discovery rate

42
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"Uncorrected testing"

» Gives P(FP;) < aforall1 <i<n
» Many type | errors (FP)

» eg: 10000 genes that are not DE. Significance level o = 0.05. But
10000x0.05 = 500 genes will be call DE "by chance".

Control of the type | error

» e.g.: Bonferroni: use per-comparison significance level a./n
» Guarantees P(FP) < «
» Very conservative

Control of the FDR false discovery rate

42
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"Uncorrected testing"
» Gives P(FP;) < aforall1 <i<n
» Many type | errors (FP)

» eg: 10000 genes that are not DE. Significance level o = 0.05. But
10000x0.05 = 500 genes will be call DE "by chance".

Control of the type | error

» e.g.: Bonferroni: use per-comparison significance level a./n
» Guarantees P(FP) < «
» Very conservative

Control of the FDR false discovery rate

» first defined by Benjamini-Hochberg (BH, 1995, 2000)

» Guarantees FDR = E (FP’TTP) <a

» finding 100 DE genes with only 2 FP seems better than finding 6 DE genes with 2
FP ...

42
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Strategy

Differential expression gene-by-gene:

For each gene J, is there a significant difference in expression between the
condition 1 and condition 2?

m Statistical model (definition and parameter estimation)

m Testing for differential expression:
Hoi = it = iz
m An abundant literature

m Fisher’s exact test
m Poisson model
m Negative Binomial model (DESeq,edgeR)

m Comparison of methods (Pachter et al. 2011, Kvam and Liu 2012, Soneson and
Delorenzi 2013)
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Differential expression

m Fisher’s exact test

44
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» can be used for RNA-seq without replicates, on a gene-by-gene basis,
organizing the data in a 2 x 2 contingency table

condition 1 condition 2  Total

Gene i Xit Xi2 Xi.
Remaining genes  >-__; Xg1 > g4 Xg2 > gz Xa.
Total X 1 X.2 X

45
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» can be used for RNA-seq without replicates, on a gene-by-gene basis,
organizing the data in a 2 x 2 contingency table

condition 1 condition 2  Total

Gene i Xit Xi2 Xi.
Remaining genes  >-__; Xg1 > g4 Xg2 > gz Xa.
Total X 1 X.2 X..

Null hypothesis

The proportion of counts for some gene i amongst two samples is the same as that of
the remaining genes:

where 71 is the true (unknown) proportion of counts in sample 1

~ we can calculate the p-value p = P(readcount > x;1|Hp) exactly using the
hypergeometric law (one or two-sided Fisher exact test)

45
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> countTable

| condition1  condition2 |  Total

Gene 1 216 160 376
Remaining genes | 28,351,805 21,934,509 | 50,286,314
Total 28,352,021 21,934,669 | 50,286,690

> fisher.test (countTable)
Fisher’s Exact Test for Count Data
data: countTable
p-value = 0.7159
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.847 1.289
sample estimates:
odds ratio

1.04

~ if test for many genes, need to adjust p-value for multiple-testing!

46
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Need for replicates!
Without replication:
m complete lack of knowledge about biological variation.

= no sound statistical basis for inference of differences between the groups.

Tarazona, S. et al. (2011) Genome Research

"We propose a novel methodology for the assessment of differentially expressed
features, NOISeq, that empirically models the noise in count data, is reasonably

robust against the choice of SD, and ean-work-inthe-absence-ofreplication."

47
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Need for replicates!

knock-down sample T2
versus
control sample U3

average count

control sample U2

versus

control sample U3

average count

red: significant genes according to Fisher test (at 10% FDR)

Figure : Fly cell culture, knock-down of pasilla (from Simon Anders)

47
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Differential expression

m The poisson model and its limitations

48
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Need to model:
B non-negative integer values (count data)
From the Binomial law to the Poisson distribution:

@ e.g., a series of n =10
coin flips, each of which
has a probability of p =5
of heads

@ The binomial distribution
gives us the probability of
observing k heads

p(X =k)= (:) p (1 — p)™k

Event: An RNAseq read “lands” in a given gene (success) or not (failure)

m B(n,p) converges to P(\ = np) when N >> p

Marioni, J. et al. (2008) Genome Research

49
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The number of reads that are mapped into a gene was first modeled using a Poisson
distribution

with A > 0.
~ only one parameter is needed to determine the probability of an event

m Poisson distribution naturally appears for count data
m It assumes that mean and variance are the same:

A = E(X) = Var(X)

m no need to estimate the variance (convenient!)

50
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Poisson distribution

A=1
A=3
A=6
% 8 A=9
X
a
- .
) .
S o

T T T
10 15 20
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The variance grows faster than the mean in RNAseq data.

| | | | | NB: v~ U 2
1078
10%6
10na Poisson: v~ u1
3
c
8 1072
g
1070
1072
1074 Da'ta: Nagalakshmi et al.
: | : : : Science 2008
1070 10M 102 10A3  10M
mean

Figure : Mean count vs variance of RNA seq data. Orange line: the fitted observed curve.

Purple: the variance implied by the Poisson distribution.

Anders S, Huber W (2010) Genome Biol
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The variance grows faster than the mean in RNAseq data.

| | | | | NB: v~ U 2

1078

10%6

10na Poisson: v~ u1
3
c
8 1072
g

1070

1072

1074 Da'ta: Nagalakshmi et al.

Science 2008

T T T T T
100 10M 1072 1073 10M

mean

Figure : Mean count vs variance of RNA seq data. Orange line: the fitted observed curve.
Purple: the variance implied by the Poisson distribution.

Overdispersion in RNA-seq data ! ~~ counts from biological replicates tend to have
variance exceeding the mean
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~ overdispersion = underestimation of the biological variance

| L
DESeq, all

Let us consider this question using the t-
distribution: L
edgeR, all

S
vn 0.5
where

- 0.0
m Sis the sample standard deviation, izl

® nis the sample size

~~ Underestimation of the variance = overes-
timation of ¢ T T T

Figure : Empirical cumulative distribution functions (ECDFs) of
p-values. No genes are truly differentially expressed, and the ECDF
curves (blue) should remain below the diagonal (gray)
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~ overdispersion = underestimation of the biological variance

| L
DESeq, all

Let us consider this question using the t-
distribution: L
edgeR, all

S
vn 0.5
where

- 0.0
m Sis the sample standard deviation, izl

® nis the sample size

~~ Underestimation of the variance = overes-
timation of ¢ T T T

Figure : Empirical cumulative distribution functions (ECDFs) of
p-values. No genes are truly differentially expressed, and the ECDF
curves (blue) should remain below the diagonal (gray)

~~ Overdispersion will lead to an increased type | error rate (probability to falsely declare
a gene DE)
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Differential expression

m Negative Binomial alternative
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Parametric approaches

nstturCurie ‘

Method | Model Reference

baySeq NB Hardcastle TJ and Kelly KA (2010)

EBSeq NB Leng N (2012)
ShrinkSeq NB (zero-inflated) Van de Wiel MA et al. (2012)

edgeR NB Robinson MD et al. (2010)

DESeq NB Anders S and Huber W (2010)

NBPSeq over-parameterized NB
TSPM poisson

DiYetal (2011)
Auer PL and Doerge RW (2011)

Non-parametric strategies

m NOISeq (Tarazona S et al. 2011)
m SAMseq (Li J and Tibshirani R 2011)

Transformation-based methods

~~ aim to find a transformation for counts to analyze them by traditional methods

® voom + limma

m vst + limma
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The negative binomial distribution can be used as an alternative to the Poisson
distribution:

Xij ~ NB(pj, ¢i)
where:
m E(Xp) = pj
® Var(Xj) = pj + ip
B ¢; is the dispersion parameter

The variance is always larger than the mean for the negative binomial = suitable for
RNA-seq data
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Many genes, few biological samples - difficult to estimate ¢ on a gene-by-gene basis
Some proposed solutions:

Method Variance
DESeq (1 + dup)
edgeR p(1 + op)
NBPseq u(1+op” ")

DESeq

data-driven relationship of variance and mean estimated using local regression for
robust fit across genes

Borrow information across genes for stable estimates of ¢.
3 ways to estimate ¢: common, trended, tagwise (moderated)

NBPSeq
NBP includes two parameters ¢ and «, estimated from all the genes
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Some practical considerations

m Data must be input as raw counts (and not RPKM or FPKM values):
normalization offsets are included in the model

m Each column should be an independent biological replicate
m Multi-factor designs now included

m Check out the DESeq Users’Guide for examples
http://www.bioconductor.org/packages/devel/bioc/vignettes/
DESeqg/inst/doc/DESeq.pdf

m Version matters !
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Step 1 : creation of a CountDataSet object

> head (countTable)

untreated3 untreated4 treated2 treated3
FBgn0000003 0 0 0 1
FBgn0000008 76 70 88 70
FBgn0000014 0 0 0 0
FBgn0000015 1 2 0 0

> condition
[1] untreated untreated treated treated
Levels: treated untreated

# We can now instantiate a CountDataSet (central data structure
in the DESeqg package)
> cds = newCountDataSet ( countTable, condition )
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Step 2 : Normalization

# estimate the effective library size
> cds <- estimateSizeFactors (cds)

> sizeFactors (cds)
treated2fb treated3fb untreated3fb untreated4fb
1.297 1.042 0.818 0.911

# If we divide each column of the count table by the size factor
for this column, the count values are brought to a common scale

> head( counts( cds, normalized=TRUE ) )
untreated3 untreated4 treated2 treated3

FBgn0000003 0.00 0.00 0.0 0.897
FBgn0000008 87.05 69.27 86.1 62.803
FBgn0000014 0.00 0.00 0.0 0.000
FBgn0000015 1.1% 1.98 0.0 0.000
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Step 3: Differential analysis

> cds <- estimateDispersions (cds)

# estimates a dispersion value for each gene
# fits a curve through the estimates

# assigns to each gene a dispersion value

(choice between the per-gene estimate and the fitted value)

> plotDispEsts (cds) # estimates against the mean
counts

dispersion
1e-03

1e-07

1 100 10000

mean of normalized counts

> res <- nbinomTest ( cds, "untreated", "treated"

normalized

62



®

Results:

> head(res)

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj

FBgn0000008 91.78 93.05 90.51 0.973 -0.0399 1.000 1.000
FBgn0000014 1.93 0.00 3.85 Inf Inf 0.378 0.913
FBgn0000017 3995.15 4340.18 3650.11 0.841 -0.2498 0.276 0.845
FBgn0000018 344.22 342.43 346.01 1.010 0.0150 0.896 1.000
FBgn0000024 5.65 4.09 7.21 1.763 0.8180 0.525 0.972
FBgn0000032 1025.52 1038.25 1012.79 0.975 -0.0358 0.801 1.000

> > plot (res$baseMean, res$log2FoldChange, log="x", pch=20, cex=.3,
+ col = ifelse( res$padj < .1, "red", "black")

log, fold change

1 100 10000

mean of normalized counts



Results:

> head(res)

FBgn0000008
FBgn0000014
FBgn0000017
FBgn0000018
FBgn0000024
FBgn0000032

> > plot (res$baseMean,

3995.15

344.22
5.65

1025.52
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0.
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342.
4.

1038
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18
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90.51 0.973
3.85 Inf
3650.11 0.841
346.01 1.010
7.21 1.763
1012.79 0.975

res$log2FoldChange, log="x",
.1,

+ col = ifelse( res$padj <

log, fold change

"red", "black"))

pch=20,

-0.0399

Inf
-0.2498
.0150
.8180
-0.0358

o o

cex=.3,

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval
91.78
1.93

1.000
0.378
0.276
0.
0
0

896

.525
.801

o oo
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10000

mean of normalized counts

padj
000

913

.845

000

.972
.000

instituts
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Curie

multiple testing correction: here genes are called DE if adjusted p-value are below

10% FDR
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What happens after a differential analysis?

Further analysis

m Test for enriched functional categories (i.e., do differentially expressed genes
tend to share the same function?)

m Clustering of genes (i.e., co-expression analysis)

m Inference of gene networks

m Integration with other data (epigenomic, metabolomic, proteomic, ...)

Biological validation

m Gene knock-down experiments

m PCR validation
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Thank you !

* Slides inspired from Marine Jeanmougin, Julie Aubert, Laurent Jacob, Simon
Anders, Michael Love and Peter N. Robinson
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